Math, asked by aiswaryaanil457, 1 month ago

pleease HELPPP pleeaseee it's hard​

Attachments:

Answers

Answered by TigerMan28
0

Answer:

Using the identity,

 { ({a}^{m} )}^{n}  =  {a}^{mn}

So, the answer proceeds as,

 { { { (\frac{8}{9}) }^{ - 2} }^{ \frac{1}{3} } }^{6}  =  {( \frac{8}{9} )}^{ - 2 \times 6 \times  \frac{1}{3} }  =  {( \frac{8}{9}) }^{ - 4}

 =  {( \frac{9}{8})}^{4}   =  \frac{729}{512}

Plz mark me as the brainliast.

Answered by ripinpeace
11

Answer:

\huge { \frac{6561}{4096} }

Step-by-step explanation:

 \huge [{(( \frac{8}{9})^{ - 2}) } ^{ \frac{1}{3} } ] ^{6}

 →\huge [{(( \frac{9}{8})^{ 2}) } ^{ \frac{1}{3} } ] ^{6}

→\huge [{( \frac{9}{8})^{ 2 \times  \frac{1}{3}  } } ] ^{6}

→\huge [{( \frac{9}{8})^{ 2 \times  \frac{1}{ \cancel3}  \times  \cancel6 } } ]

→\huge [{( \frac{9}{8})^{ 2 \times  2 } } ]

→\huge {( \frac{9}{8})^{ 4 } }

→\huge {\frac{9 ^{4} }{ {8}^{4} } }

→\huge    \green{   \boxed{\frac{6561}{4096}}}

Identity used -

  • (2³)⁵ = \large {2}^{3 + 5}
Similar questions