Math, asked by adityakusale7, 5 months ago

pleeease answer fast

Attachments:

Answers

Answered by nazimakhan587
0

Answer:

don't know the answer

Step-by-step explanation:

plz thank me

Answered by Anonymous
5

Required Answer :

Given :

 \tt \: f(x) =  \begin{cases}  \tt \: ax + b,& \tt \: x < 1 \\ \tt 4,& \tt \: x = 1 \\ \tt b - ax,& \tt \: x > 1\end {cases}

Solution :

\sharp \: \: \tt \lim_{x\to 1^{ + } } \: f(x) =  \lim_{x\to 1^{  } } \: f(x)  =  \lim_{x\to 1^{  -  } } \: f(x) \:  \:  \:  \bf[   \: \because \: function \:  \:  is  \:  \: defined  \:  \: at  \:  \: x=1 \:  ]\\  \\  \\  \\  \tt \lim_{x\to 1^{ + } } \: f(x) =   \lim_{x\to 1^{  -  } } \: f(x) = \lim_{x\to 1^{  } } \: f(x)   \\ \\   \\  \implies \tt \lim_{x\to 1^{   + } } \: b - ax = \lim_{x\to 1^{ -   } } \: ax + b = \lim_{x\to 1^{  } } \: f(x)   \\  \\  \\  \tt \natural \:  \:  \:  putting \:  \: limiting \:  \: value \\  \\  \\   \begin{array}{c |c} \implies \tt \: b - a =  4 \underline{ \:  \:  \:  \:  \:  \:  \: }(1) & \tt \implies a + b = 4 \underline{ \:  \:  \:  \:  \:  \: }(2) \\   \end{array} \\  \\  \\ \tt  \sharp \: \:  Adding \:  \:  {eq}^{n}  \:  \: (1)  \:  \: \& \: \:  (2) \\  \\ \\   \tt \: b -  \cancel{a} +  \cancel{a} + b = 4 + 4 \\  \\   \\ \large  \bf \therefore \:  \:  \:  b = 4 \\  \\  \&  \\  \\  \bf  \large\therefore  \:  \:  \: \: a = 0 \\  \\  \\  \\ \LARGE \red{\mathfrak{ Happy  \:  \: New  \:  \: Year  \:  \: 2021} }\\  \\  \\   \small \tt \colorbox{aqua}{@StayHigh}

Similar questions