ples help me to solve
Attachments:
Rahul035:
hiii
Answers
Answered by
3
Note: Here, I am writing theta as A.
Given, cosA + sinA = 1.
On squaring both sides, we get
= > (cosA + sinA)^2 = (1)^2
= > cos^2A + sin^2A + 2sinAcosA = 1
We know that cos^2A + sin^2A = 1.
= > 1 + 2sinAcosA = 1
= > 2sinAcosA = 0
= > sinAcosA = 0.
Now,
= > (cosA - sinA)^2 = (cos^2A + sin^2A - 2sinAcosA)
= (cos^2A + sin^2A + 2sinAcosA) - 4sinAcosA
= (cosA + sinA)^2 - 4sinAcosA
= (1)^2 - 4(0)
= 1 - 0
= 1.
= > cosA - sinA = +1, -1.
Hope this helps!
Given, cosA + sinA = 1.
On squaring both sides, we get
= > (cosA + sinA)^2 = (1)^2
= > cos^2A + sin^2A + 2sinAcosA = 1
We know that cos^2A + sin^2A = 1.
= > 1 + 2sinAcosA = 1
= > 2sinAcosA = 0
= > sinAcosA = 0.
Now,
= > (cosA - sinA)^2 = (cos^2A + sin^2A - 2sinAcosA)
= (cos^2A + sin^2A + 2sinAcosA) - 4sinAcosA
= (cosA + sinA)^2 - 4sinAcosA
= (1)^2 - 4(0)
= 1 - 0
= 1.
= > cosA - sinA = +1, -1.
Hope this helps!
Similar questions