Math, asked by nishantmehta12057, 11 months ago

ples koe eska answer de dou​

Attachments:

Answers

Answered by Anonymous
21

\huge\bf\underline{\pink{Question:-}}

Find the value of m if the points(5,1),(-2,-3),and (8,2m) are collinear then find the value of m.

━━━━━━━━━━━━━━━━━━━━━━

\large\bf\underline{\blue{Answer}}

m=19/4

\large\bf\underline{\green{Given:-}}

Three points are given as A(5,1) ,B(-2,-3) ,C(8,2m).

\large\bf\underline{\green{To\:\:Find:-}}

\bf \:we\: need\: to\: find \:the \:Value \:of \:m.

\huge{\underline{\bf{\red{Solution:-}}}}

If A B and C are collinear then ar ∆ABC = 0.

 \bf \: ar \triangle \: ABC=\\{\underline{\boxed{ =  \frac{1}{2}[x_{1}( y_{2} -  y_{3})+x_2(y_3-y_1)+x_3(y_1-y_2)}}}

:\implies½[5(-3-2m)+(-2)(2m-1)+8(1-(-3)]

:\implies ½[- 15 -10m -4m + 2 + 8 + 24 ] = 0

:\implies ½[-15 -14m +34 ] = 0

:\implies ½[19 -14m ] = 0

:\implies [19 - 14m] = 0×2

:\implies 19 = 14m

:\implies m = 19/14

━━━━━━━━━━━━━━━━━━━━━

Answered by amitkumar44481
18

Question :

Find the Value of m If the point ( 5 , 1 ) , ( -2 , -3 ) and ,( 8 , 2m ) are Collinear.

To Find :

The value of m.

Given :

  • Point ( 5 , 1 )
  • Point ( -2 , -3 )
  • Point ( 8 , 2m )

Formula Required :

\tt\dagger \:  \:  \:  \:  \: Area_\triangle  = \dfrac{1}{2} [ x_1( y_2 - y_3 ) +x_2 ( y_3 - y_1) + x_3 ( y_1 + y_2) ]

Solution :

Let Point be,

  • A ( 5 , 1 )
  • B ( -2 , -3 )
  • C ( 8 , 2m )
  • x1 = 5.
  • x2 = -2.
  • x3 = 8.
  • y1 = 1.
  • y2 = -3.
  • y3 = 2m.

\rule{90}1

# If A B and C are Collinear then Area of ∆ ABC be equal to 0.

 \tt\longmapsto0 =  \frac{1}{2} [5( - 3 - 2m)  - 2(2m - 1) + 8(1  + 3)]

 \tt\longmapsto0 =  - 15 - 10m - 4m + 2 + 32.

 \tt\longmapsto 0 =34  - 15 - 14m.

 \tt\longmapsto \cancel{ - }19 = \cancel{ - } 14m.

 \tt\longmapsto m = \dfrac{19}{14}

Therefore, the value of m is 19/14.

Similar questions