plesae solve the questions attachment is qiven of linear equatoin
Attachments:
Answers
Answered by
0
Hi friend, ashish here.
Here is your answer:
Given that,
\frac{\sqrt{11}- \sqrt{7} }{\sqrt{11}+\sqrt{7}} = a- b \sqrt{77}11+711−7=a−b77
To find,
The value of a & b.
Solution:
First we must rationalize the denominator of the given number by multiplying and dividing with it's conjugate.
Conjugate of denominator is √11 - √7.
Then,
\frac{\sqrt{11}- \sqrt{7} }{\sqrt{11}+ \sqrt{7} } \times \frac{\sqrt{11}- \sqrt{7} }{\sqrt{11}- \sqrt{7} } = \frac{(\sqrt{11}- \sqrt{7} )^{2} }{(\sqrt{11}- \sqrt{7})(\sqrt{11}+ \sqrt{7}) }11+711−7×11−711−7=(11−7)(11+7)(11−7)2
Here in the denominator to multiply we can use the identity:
(x+y)(x-y) = x² - y².
Then,
(√11 + √7) (√11 - √7) = (√11)² - (√7)² = 11 - 7 = 4
So,
\frac{(\sqrt{11}- \sqrt{7} )^{2} }{(\sqrt{11}- \sqrt{7})(\sqrt{11}+ \sqrt{7}) } = \frac{11+7-2( \sqrt{11})( \sqrt{7}) }{4} = \frac{18 - 2 \sqrt{77} }{4}(11−7)(11+7)(11−7)2=411+7−2(11)(7)=418−277
⇒ \frac{18 - 2 \sqrt{77} }{4} = a-b \sqrt{77}418−277=a−b77
⇒ \frac{18}{4} - \frac{2 \sqrt{77} }{4} = a-b \sqrt{77}418−4277=a−b77
Now by comparing the above equation , We get:
a= \frac{18}{4} = \frac{9}{2} : b= \frac{2}{4} = \frac{1}{2}a=418=29:b=42=21
Hence these are the values of a & b.
__________________________________________________
Hope my answer is helpful to you
Here is your answer:
Given that,
\frac{\sqrt{11}- \sqrt{7} }{\sqrt{11}+\sqrt{7}} = a- b \sqrt{77}11+711−7=a−b77
To find,
The value of a & b.
Solution:
First we must rationalize the denominator of the given number by multiplying and dividing with it's conjugate.
Conjugate of denominator is √11 - √7.
Then,
\frac{\sqrt{11}- \sqrt{7} }{\sqrt{11}+ \sqrt{7} } \times \frac{\sqrt{11}- \sqrt{7} }{\sqrt{11}- \sqrt{7} } = \frac{(\sqrt{11}- \sqrt{7} )^{2} }{(\sqrt{11}- \sqrt{7})(\sqrt{11}+ \sqrt{7}) }11+711−7×11−711−7=(11−7)(11+7)(11−7)2
Here in the denominator to multiply we can use the identity:
(x+y)(x-y) = x² - y².
Then,
(√11 + √7) (√11 - √7) = (√11)² - (√7)² = 11 - 7 = 4
So,
\frac{(\sqrt{11}- \sqrt{7} )^{2} }{(\sqrt{11}- \sqrt{7})(\sqrt{11}+ \sqrt{7}) } = \frac{11+7-2( \sqrt{11})( \sqrt{7}) }{4} = \frac{18 - 2 \sqrt{77} }{4}(11−7)(11+7)(11−7)2=411+7−2(11)(7)=418−277
⇒ \frac{18 - 2 \sqrt{77} }{4} = a-b \sqrt{77}418−277=a−b77
⇒ \frac{18}{4} - \frac{2 \sqrt{77} }{4} = a-b \sqrt{77}418−4277=a−b77
Now by comparing the above equation , We get:
a= \frac{18}{4} = \frac{9}{2} : b= \frac{2}{4} = \frac{1}{2}a=418=29:b=42=21
Hence these are the values of a & b.
__________________________________________________
Hope my answer is helpful to you
pushpajoshi0222:
please mark as brainliest
Answered by
1
Step-by-step explanation:
Refer To Attachment
hope it's help you
Attachments:
Similar questions
Math,
7 months ago
English,
7 months ago
Physics,
1 year ago
Social Sciences,
1 year ago
Physics,
1 year ago