Math, asked by nishantmehta12057, 9 months ago

plese a swer both of them ples ​

Attachments:

Answers

Answered by sonalithakur82
10

Answer:

672 is the sum of the first 24 terms.

Step-by-step explanation:

an=a + (n-1)d      [where a=1st term of ap ,d=common difference,n=no. of terms]

given ,

an = 3+2n = a +dn -d

   here we can say that

3 = a - d

2n = dn

d=2

3 = a -2

a = 5

hence ,

the ap is :  5 ,7,9,11,13,15,17,.....

now sum of terms upto nth term

sn = n/2 (2a + (n-1)d )

s24 = 12 (2*5 + 23*2)

s24 = 12* (10 + 46)

s24 = 12 * 56

s24 = 672

Answered by Anonymous
34

\huge\underline{ \mathrm{ \red{QueStiOn}}}

Find the sum of first 24 terms of the list of Numbers. whose nth term is given by an=3+2n

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \green{ \bold{Answer}}}}

  1. sum of 1st 24 terms = 672

\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{ExPlanATiOn }}}}}}

  \large\underline{ \underline{ \red{ \bold {Given}}}}

an = 3+2n

  \large\underline{ \underline{ \red{ \bold {To \:Find}}}}

we need to find the sum of 1st 24 terms.

⠀⠀⠀⠀⠀\huge\underline{ \underline{ \orange{ \bold{sOluTiOn}}}}

⠀⠀⠀⠀⠀⠀

\bf:\implies\:1st\:term = a_1= 3+2(1)

\bf:\implies\:a = 3 + 2 \\  \\ \bf:\implies\:a = 5 \\  \\

\bf:\implies\: second\:term=a_2=3+2(2)

\bf:\implies\:a_2=3+4

\bf:\implies\:a_2=7\\\\

\bf:\implies\:third \:term \:a_3=3+2(3)

\bf:\implies\:a_3=3+6

\bf:\implies\:a_3=9\\\\

\bf:\implies\:so\:the \: series=5,7,9.......

\bf:\implies\: common\: difference (d)=7-5=2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf:\implies\:9-7=2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf:\implies\:11-9=2

\bf\:so \: common\: difference=2\:

{ \boxed{ \fbox { \pink {\bf{\:s_{n} =  \frac{n}{2} (2a + (n - 1)d)}}}} }

where n=24,

a = 5

d = 2

putting these values in the formula

 \bf:\implies=\frac{24}{2} [2\times5 + (24 - 1)2]

 \bf:\implies=\frac{24}{2} [2\times5 + (23)(2)]

 \bf:\implies=12[10+ 46]

 \bf:\implies=12\times56

 \bf:\implies=672

hence sum of 1st 24 terms is 672.

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \mathrm{ \red{QueStiOn2}}}

Find the distance between the points A (0,6) and B(0,-2)

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \green{ \bold{Answer}}}}

Distance between the points is 8units

\large{ \underline{ \purple{ \bold{ \underline{ \mathrm{ExPlanATiOn }}}}}}

  \large\underline{ \underline{ \red{ \bold {Given}}}}

two points are given as A(0,6) and B(0,-2)

  \large\underline{ \underline{ \red{ \bold {To \:Find}}}}

we need to find the distance between the two points.

⠀⠀⠀⠀⠀\huge\underline{ \underline{ \orange{ \bold{sOluTiOn}}}}

⠀⠀⠀⠀⠀⠀

Using distance formula

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \boxed{ \pink{\bf\:{\sqrt{(x_{2}  -x_{1})  {}^{2} +(y_{2}  - y_{1})  {}^{2} }}}}}

\bf\:x_1=0\\\bf\:x_2=0\\\bf\:y_1=6\\\bf\:y_2=-2

\bf: \implies \sqrt{(0 + 0) {}^{2}  + ( - 2 - 6) {}^{2} }  \\  \\ \bf  :   \implies \sqrt{0 + 64} \\  \\  \bf  :   \implies \sqrt{64}  \\  \\ \bf  :   \implies=8 units

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions