Math, asked by msasmita39, 2 months ago

Plese find the (iii) Bit From Selina Class 9 Chapterwise revision​

Attachments:

Answers

Answered by BrainlyYuVa
4

Solution

Given :

  • x² + 1/x² = 7_________(1)

Find :-

  • Value of (1) x - 1/x ,
  • (2) x + 1/x
  • (3). 3x² - 3/x²

Explantion

We Know,

( x + 1/x)² = + 2.x.1/x + 1/ = + 1/ + 2

First we calculate, ( x + 1/x).

we Have,

==> (x + 1/x)² = x² + 1/x² + 2

keep value by equ(1) .

==> (x + 1/x)² = 7 + 2

==> (x + 1/x)² = 9

==> (x + 1/x )² = 3²

==> x + 1/x = 3 [ Ans ].__________(2)

_________________________

Now, calculate , ( x - 1/x).

==> (x - 1/x)² = x² + 1/x² - 2

keep value by equ(1)

==> (x - 1/x)² = 7 - 2

==> (x - 1/x)² = 5

==> (x - 1/x) = 5. [ Ans].__________(3)

________________________

Now, Calculate (3x² - 3/)

For this,

Multiply by equ(2) & equ(3)

==> (x + 1/x)(x - 1/x) = 3×√5

==> x² - 1/x² = 3√5 ________________(4)

Now, Multiply by 3 both side in equ(4)

==> 3(x² - 1/x²) = 3 × 3√5

==> 3(x² - 1/x)² = 9√5. [ Ans]

_____________________

Answered by MathLoverHannu
23

Step-by-step explanation:

☞︎︎︎︎︎︎︎︎︎︎︎︎︎︎︎︎︎︎Fᴏʀ ǫᴜᴇsᴛɪᴏɴ (1)

✫Find :-

• x-1/x

✫Given:-

• x^2 + 1/x^2 =7

✫Formula:-

 \tt ({x -  \frac{1}{x} )}^{2}  =  {x}^{2}   -  2 \times x \times  \frac{1}{x}  + {( \frac{1}{x} )}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }   -  2

✫Now put the values in formula,

\tt ({x -  \frac{1}{x} )}^{2}   = 7 - 2 \\  \tt\tt ({x -  \frac{1}{x} )}^{2}   = 5 \\  \tt x -  \frac{1}{x}  =  \sqrt{5}

︎︎︎︎︎︎︎︎︎︎︎︎︎︎︎☞︎︎︎Fᴏʀ ǫᴜᴇsᴛɪᴏɴ (2)

✫Find:-

•x + 1/x

✫Given:-

•x^2 + 1/x^2 =7

✫Formula:-

 \tt ({x  +  \frac{1}{x} )}^{2}  =  {x}^{2}    +   2 \times x \times  \frac{1}{x}   +   {( \frac{1}{x} )}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }    + 2

✫Now put the values in formula,

\tt ({x  +   \frac{1}{x} )}^{2}   = 7  + 2 \\  \tt\tt ({x  +  \frac{1}{x} )}^{2}   = 9\\  \tt x  +   \frac{1}{x}  =  \sqrt{9}  = 3

︎︎︎︎︎︎︎︎︎︎︎︎︎︎︎☞︎︎︎Fᴏʀ ǫᴜᴇsᴛɪᴏɴ (3)

✫Find:-

•3x^2 - 3/x^2 or 3(x^2 - 1/x^2)

✫Given:-

•x^2 + 1/x^2 =7

✫Formula:-

</p><p>\tt ({x   -  \frac{1}{x} )}^{2}  =  {x}^{2} -  2 \times x \times  \frac{1}{x}     +    {( \frac{1}{x} )}^{2}    = {x}^{2}  +  \frac{1}{ {x}^{2} }     -  2

✫Now put the values in formula,

\tt ({x -  \frac{1}{x} )}^{2}   = 7 - 2 \\  \tt\tt ({x -  \frac{1}{x} )}^{2}   = 5 \\  \tt x -  \frac{1}{x}  =  \sqrt{5}

✫Now multiply 3 on both sides,

 \tt3( {x}^{2}  -  \frac{1}{ {x}^{2} })  = 3 \times  \sqrt{5}  \\ \tt3 {x}^{2}  -  \frac{3}{ {x}^{2} }  = 3 \sqrt{5}

___________________________

Thanks for question

Similar questions