Math, asked by cutegirl774, 2 months ago

plese solve karke dedeo yr​

Attachments:

Answers

Answered by Anonymous
10

  \huge \underline \mathfrak{answer01}\\ 7  ^ { 3x  }   \times  7  ^ { 2  }  =7  ^ { 14  } \\ 49\times 7^{3x} 7^{3x} \\  \log(7^{3x})=\log(13841287201) \\  3x\log(7)=\log(13841287201) \\  3x\log(7)=\log(13841287201)  \\ 3x=\frac{\log(13841287201)}{\log(7)} \\ 3x=\log_{7}\left(13841287201\right) \\ x=\frac{12}{3}

  \huge \underline \mathfrak{answer02} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 216 \times  6  ^ { 3x-2  }  =621 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ 6\times 6^{3x-2}=6  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \: \\ 6^{3x-2}=\frac{1}{36}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \log(6^{3x-2})=\log(\frac{1}{36}) \\ 3x-2=\frac{\log(\frac{1}{36})}{\log(6)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  3x-2=\log_{6}\left(\frac{1}{36}\right)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 3x=-2-\left(-2\right) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ x=\frac{0}{3}

\fbox \pink {d}\fbox \green {a} \fbox \blue {r} \fbox \red {k} \fbox \purple {s} \fbox \orange {h} \fbox \pink {a} \fbox \green{d} \fbox \blue{o} \fbox \red{w} \fbox \purple{7083}

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
52

Required answer:-

Question:

Find the value of x

(i) \: 7 {}^{3x}  \times 7 {}^{2} \:  =  \: 7 {}^{14}

(ii) \: 216 \times 6 {}^{3x - 2}  = 6 {}^{7}

Solution:

To find:

❥ Value of x

Concept:

Exponents

Understanding the concept...

If m is a positive integer, then a × a × a ------ upto m terms, is written as a^m , where 'a' is called the base and 'm' is called the power ( or exponent ).

Solving Exponential Equations

For solving an exponential equation, express both of its sides into terms with the same base. Then the exponents on both the sides of the equation are equal.

i.e. \: if \: a {}^{x}  = a {}^{y}  \\ x = y

Step by step explaination:

(i) 7 {}^{3x + 2}  = 7 {}^{14}

Therefore,

3x + 2 = 14

3x = 14-2

3x = 12

x = 4

(ii)216 \times 6 {}^{3x - 2}  = 6 {}^{7}

6 {}^{3}  \times 6 {}^{3x - 2}  = 6 {}^{7}

6 {}^{3 + 3x - 2}  = 6 {}^{7}

6 {}^{3x + 1}  = 6 {}^{7}

3x + 1 = 7

3x = 7-1

3x = 6

x = 2

Similar questions