Math, asked by ashishanshu88, 1 year ago

plese solve this guys.....​

Attachments:

Answers

Answered by karthikkattojup6118q
1

refer the attachment

Attachments:
Answered by nikhilkumar143
0

Answer:

 \frac{1 +  \cos( \alpha )  -  { \sin( \alpha ) }^{2} }{ \sin( \alpha ) (1 +  \cos( \alpha ) }  =  \cot( \alpha )  \\  \\ l.h.s. \\   \frac{ { \sin( \alpha ) }^{2}  +  { \cos( \alpha ) }^{2}  \ + cos( \alpha ) -  { \sin( \alpha ) }^{2}  }{ \sin( \alpha ) (1  +  \cos( \alpha )) }  \\  \\    \frac{ { \cos( \alpha ) +  \cos( \alpha )  }^{2} }{ \sin( \alpha ) (1 +  \cos( \alpha )) }  \\   \\ \frac{ \ \cos( \alpha ) (1 +  \cos( \alpha ) }{ \sin( \alpha )(1 +  \cos( \alpha )  }  \\  \ \\{ \cos( \alpha ) }/{ \sin( \alpha ) }  =  >  \cot( \alpha )  \\ \\  hence \: proved \:  \:  \:  \\  \ \\ cot( \alpha )  =  \cot( \alpha )

may be it's helpful to you ✴️

Similar questions