Math, asked by nishantmehta12057, 11 months ago

plez answer both questions ​

Attachments:

Answers

Answered by vasudeopathak9
1

Step-by-step explanation:

1)

---》 root 2 , root 8 , root 18 ,root 32 is a given sequence.

a= t1 = root 2, t2 = root 8 , t3 = root 18 , t4 = root 32

therefore,

d = root 8 - root 2 = root 6

d = root 18 - root 8 = root 10

d = root 32 - root 18 = root 14

here , the common difference of a given sequence is not equal. therefore given sequence is not A.P.

The given sequence is not A.P. ,

so we can not find next two terms.

IF THIS ANSWER IS HELPFUL TO YOU, PLEASE GIVE ME 5 STAR RATING AS A BRAINLIAST ANSWER PLEASE AND PLEASE PLEASE FOLLOW ME.

Attachments:
Answered by umiko28
1

  \huge\mathbb\red{SOLUTION  }

 \mathbb\pink{ GIVEN \: SEQUENCE} \\  \\ 1) \sqrt{2} , \sqrt{8},  \sqrt{18}  ,\sqrt{32}  \\  \\ \bf\  here \\  \\  \sf\ a =  \sqrt{2}  \\  \sf\ a2 =  \sqrt{8}  \\ a3 =  \sqrt{18}  \\  \sf\ a4 =  \sqrt{32}  \\  \\  \underline{we \: know \: that} \\  \\  \sf\ \: d = second \: term  - first \: term \\  \\   \sf\ a2 - a \implies\\  \\  \sf\ \: d =  \sqrt{8}  -  \sqrt{2}  =  2\sqrt{2}  -  \sqrt{2}  =  \sqrt{2}  \\  \\  \sf\ a3 - a2 \implies \\  \\  \sf\  \sqrt{18}  -  \sqrt{8}  = 3 \sqrt{2} - 2 \sqrt{2}   =  \sqrt{2}  \\  \\ a4 - a3 \implies \\  \\\sf\ \sqrt{32} -  \sqrt{18}   = 4 \sqrt{2} -  3 \sqrt{2}   =  \sqrt{2}  \\  \\  \red{ \boxed{ \underline{d =  \sqrt{2}   \:  \:  \:  \ddot\smile}}} \\  \\  \sf\  \therefore \: so \: next \: 2 \: terms \implies \: a5 \: and \: a6 \\  \\ here \\ a =  \sqrt{2}  \: and \: d =  \sqrt{2}  \\  \\  \sf\ \: a5 =  a + 4d  \\  \\ \sf\  \:  \:  \:  \:  \:  \: =  \sqrt{2}  + 4 \times  \sqrt{2}  \\  \\ \sf\  \:  \:  \:  \:  \:  \: =  \sqrt{2} + 4 \sqrt{2}   \\  \\ \sf\ \:  \:  \:  \:  \:  = 5 \sqrt{2}  =  \sqrt{50}  \\  \\ \sf\ \: a6 = a + 5d \\  \\ \sf\  \:  \:  \:  \:  \:  =  \sqrt{2}  + 5 \times  \sqrt{2}  = 6 \sqrt{2}  =  \sqrt{72}  \\  \\  \\.

__________________________

2)\sf\ {2}^{nd}  \: term = 10 \\  \\ \sf\ {6}^{th}  \: term =  \frac{ {4}^{th} }{12}  \\  \\\bf\ now \\  \\\sf\ a + d = 10  -  -  -  -  -  - (1)\\  \\ \sf\ \: a + 5d =  \frac{a + 3d}{12}  \\  \\ \sf\ \implies: a + 3d = 12a + 60d \\  \\ \sf\ \implies: 12a - a  + 60d - 3d \\  \\ \sf\ \implies: 11a + 57d = 0 \\  \\ \sf\ \implies: a =  \frac{ - 57d}{11}  -  -  -  -  - (2) \\  \\ \sf\  \bigstar \: now \: value \: of \: a \: put \: in \: 1 \\  \\ \sf\ \implies:  \frac{ - 57d}{11} + d = 10 \\  \\  \sf\ \implies:  \frac{ - 57d + 11}{11}  = 10 \\  \\ \sf\ \implies:  - 57d + 11 = 110 \\  \\ \sf\ \implies:  - 57d = 110 - 11 \\  \\ \sf\ \implies:  - 57d = 99 \\  \\ \sf\boxed{ \implies: d =  \frac{99}{ - 57} =  \frac{33}{ - 19}  } \\  \\  \bf\underline{ value \: of \: d \: put \: in \: 2} \\  \\ a =  \frac{ - 57 \times  \frac{33}{ - 19} }{11}  \\  \\ \sf\ \implies:  \frac{ - 3 \times 33}{11}  \\  \\ \sf\ \implies: a =  - 3 \times 3 \\  \\ \sf\boxed{ \red{ \implies: a =  - 27}}

Similar questions