Physics, asked by revachandra260p7qosn, 9 months ago

pllsssss help plssssss​

Attachments:

Answers

Answered by IshitaAgarwal05
2

Answer:

(i) 10.33 ohm

(ii) 1.72 A

(iii) 12.05 V

Explanation:

(i) Equivalent Resistance = [1/5 + 1/10]⁻¹ + 7 ohm

=> 10/3 + 7 = 31/3 ohm = 10.33 ohm

(ii) By Ohm's law, V = IR,  

So, I = \frac{31}{3 x 6} = 31/18 A = 1.72 A

(iii) Voltage across 7 ohm resistor will be ->

R = 7 ohm, I = 31/18 A, V = ?

Again by Ohm's law, V = IR

=> V = 7x31/18 = 12.05 V

Hope this helps.....

Answered by rocky200216
33

[i] 10.33 Ohm .

[ii] 0.58 Ampere .

[iii] 4.06 Volt .

\large\mathcal{\underbrace{\red{SOLUTION:-}}}

________________________________

✍️ Here, 5ohm and 10ohm are connected in parallel . So, their equivalent resistance is

\rm{\dfrac{1}{{R_{eq}}_1}\:=\:\dfrac{1}{5}\:+\:\dfrac{1}{10}\:}

\rm{\implies\:\dfrac{1}{{R_{eq}}_1}\:=\:\dfrac{2\:+\:1}{10}\:}

\rm{\implies\:\dfrac{1}{{R_{eq}}_1}\:=\:\dfrac{3}{10}\:}

\rm{\red{\implies\:{R_{eq}}_1\:=\:\dfrac{10}{3}\:ohm}}

✍️ Now, 7ohm and (10/3)ohm are connected in series . So their equivalent resistance is,

\rm{\implies\:R_{eq}\:=\:7\:+\:\dfrac{10}{3}\:}

\rm{\implies\:R_{eq}\:=\:\dfrac{21\:+\:10}{3}\:}

\rm{\purple{\boxed{\implies\:R_{eq}\:=\:\dfrac{31}{3}\:ohm\:\:or\:\:10.33\:ohm\:}}}

(i) Hence, equivalent resistance is 10.33ohm .

________________________________

(ii) the total current is,

  • Voltage (V) = 6volt

  • Equivalent Resistant = 10.33ohm

\rm{\implies\:Current(I)\:=\:\dfrac{Voltage(V)}{Resistance_{eq}}\:}

\rm{\implies\:I\:=\:\dfrac{6}{10.33}\:}

\rm{\purple{\boxed{\implies\:I\:=\:0.58\:Ampere\:}}}

_________________________________

(iii) the voltage across 7ohm resistor is,

  • I = 0.58 Ampere

  • Resistance(R) = 7 ohm

\rm{\implies\:V\:=\:I\:R\:}

\rm{\implies\:V\:=\:0.58\times{7}\:}

\rm{\purple{\boxed{\implies\:V\:=\:4.06\:volt\:}}}

_________________________________

More Info :-

✍️ For parallel combination,

\red\bigstar\:\rm{\blue{\boxed{\dfrac{1}{R_{eq}}\:=\:\dfrac{1}{R_1}\:+\:\dfrac{1}{R_2}\:+\:......\:+\:\dfrac{1}{R_n}\:}}}

✍️ For series combination,

\red\bigstar\:\rm{\blue{\boxed{R_{eq}\:=\:R_1\:+\:R_2\:+\:....\:+\:R_n\:}}}

✍️ Ohm's Law states that,

\red\bigstar\:\rm{\blue{\boxed{Voltage\:(V)\:=\:Current\:(I)\:\:\times\:Resistance\:(R)\:}}}

✍️ In Series combination, same current passes through each resistance .

✍️ In Parallel combination, there is same Potential drop across each resistance .

________________________________

Similar questions