Math, asked by panduammulu14, 10 months ago

pllzz answer it!!!!!! A quadratic equation whose roots are sin ^2 18 ,cos^2 36 is

Answers

Answered by Anonymous
146

\huge\underline\bold\orange{Answer}

\rule{200}{20}

\huge\underline\bold\blue{Given}

Roots\:of\:a\: quadratic\: equation\:are\:sin^2\:18°\:,cos^2\:36°\:are

\huge\underline\bold\red{To \: find}

 The\: quadratic\: equation

\huge\underline\bold\green{Solution}

\color{red}{Solve\:the\:Sum\:of\: the\:roots}

=\: sin^2\:18°\:+\:cos^2\:36°

=\:\frac{\sqrt[5]\:-\:1}{4}^2\:+\:\frac{\sqrt[5]\:+\:1}{4}^2

=\:\frac{1}{16}\:×\:\sqrt{[5]\:-\:1}^2(\sqrt{[5]\:+\:1}^2)

=\:\frac{1}{16}\:×\:[2(5\:+\:1)

=\:\frac{3}{4}

\color{purple}{Product\:of\:roots}

=\:sin^2\:18\:.\:cos^2\:36°

=\:\frac{\sqrt[5]\:-\:1}{4}^2\:.\:\frac{\sqrt[5]\:+\:1}{4}^2

=\:\frac{5-4}{4.4}^2\:=\:\frac{1}{16}

=\: Therefore\: quadratic\: equation\:is

=\:x^2\:-\:[sin^2\:18°\:+\:cos^2\:36°]x\:+\:[sin^2\:18°\:cos^2\:36°]

=>\:x^2\:+\:[\frac{3}{4}]x\:+\:\frac{1}{16}

=>\:16x^2\:-\:12x\:+\:1\:=\:0

\rule{200}{20}

\huge\underline\bold\pink{Thanks}

Answered by bhanuprakashreddy23
3

Answer:

pls mark me as brainliest & thank me

Attachments:
Similar questions