English, asked by amiteshkumar71, 10 months ago

pllzzz simplify this question also​

Attachments:

Answers

Answered by Anonymous
5

Given :-

\sf{\implies \frac{\sqrt{5} -1 }{\sqrt{5} +1 } + \frac{\sqrt{5} + 1 }{\sqrt{5}-1 } = a + b\sqrt{5}  }\\

To Find :-

\sf{\implies \; Value \; of \; A \; and \; B }\\

Solution :-

\sf{\implies \frac{\sqrt{5} -1 }{\sqrt{5} +1 } + \frac{\sqrt{5} + 1 }{\sqrt{5}-1 }   }\\

Rationalizing these two fractions seperately :-

\sf{\implies \frac{\sqrt{5} -1 }{\sqrt{5} +1 } \times \frac{\sqrt{5} -1 }{\sqrt{5} -1 } + \frac{\sqrt{5} + 1 }{\sqrt{5}-1 } \times \frac{\sqrt{5} +1 }{\sqrt{5} +1 } }\\

\sf{\implies \frac{[\sqrt{5} -1 ]^{2}  }{[\sqrt{5}]^{2}  - 1 } + \frac{[\sqrt{5} + 1]^{2}  }{[\sqrt{5}]^{2} -1 }   }\\

\sf{\implies \frac{[\sqrt{5} -1 ]^{2} + [ \sqrt{5} +1 ] ^{2} }{[\sqrt{5}]^{2}  - 1 }  }\\

\sf{\implies \frac{[\sqrt{5} ]^{2} + 1 -2\sqrt{5}  + [ \sqrt{5} ] ^{2} + 1 + 2\sqrt{5} }{5  - 1 }  }\\

\sf{\implies \frac{5+1 - 2\sqrt{5}  + 5 + 1 + 2\sqrt{5} }{4}  }\\

\sf{\implies \frac{12 }{4}  \rightarrow 3 }\\

\sf{\implies a + b\sqrt{5} = 3 + 0\sqrt{5}   }\\

Hence , A = 3 and B = 0

Answered by Anonymous
24

Explanation:

ԶŲƐʂɬıƠИ :-

 \sf \green{ \to \: \frac{\sqrt{5}+1}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{\sqrt{5}+1}=a+b\sqrt{5}} \\  \\  </p><p>

ƠИ ʂƠƖ۷ıИƓ :-

</p><p> \sf\orange{\to\frac{(\sqrt{5}+1)^2+(\sqrt{5}-1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}=a+b\sqrt{5}}  \\ \\  </p><p>

 \sf  \blue{\to\frac{(\sqrt{5}+1)^2+(\sqrt{5}-1)^2}{5-1}=a+b\sqrt{5} } \\\\

  \sf\pink{ \to\frac{5+1+2\sqrt{5}+5+1-2\sqrt{5}}{4}=a+b\sqrt{5} } \\ \\  </p><p>

 \sf \purple{ \to\frac{12+0\sqrt{5}}{4}=a+b\sqrt{5}}  \\  \\

 \bf \sf \red{ \to \: 3+0\sqrt{5}=a+b\sqrt{5}} \\  \: \bf \blue{ \to a =3 \: nd \: b \:  = 0 }

Similar questions