Math, asked by poojakumaridln1, 2 months ago

plot a graph for each of the following pairs of equation and shade the region bounded by the 2 lines and the x axis i) x-y+1 =0 and 2x+y-10=0​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:x - y + 1 = 0 -  -  - (1)

and

\rm :\longmapsto\:2x  +  y  -  10 = 0 -  -  - (2)

Now,

Consider, Equation (1),

\rm :\longmapsto\:x - y + 1 = 0

can be rewritten as

\rm :\longmapsto\:x - y  =  -  \: 1

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:0 - y  =  -  \: 1

\rm :\longmapsto\: - y  =  -  \: 1

\rm :\longmapsto\: y  = \: 1

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:x - 0  =  -  \: 1

\rm :\longmapsto\:x  =  -  \: 1

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf  - 1 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 1) & (- 1 , 0)

➢ See the attachment graph. [ Black Line ]

Consider Equation (2),

\rm :\longmapsto\:2x  +  y  -  10 = 0

can be rewritten as

\rm :\longmapsto\:2x  +  y  = 10

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:2x  +  0  = 10

\rm :\longmapsto\:2x   = 10

\rm :\longmapsto\:x   = 5

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:2 \times 0  +  y  = 10

\rm :\longmapsto\:0  +  y  = 10

\rm :\longmapsto\:y  = 10

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 10 \\ \\ \sf 5 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 10) & (5 , 0)

➢ See the attachment graph. [ Red Line ]

Hence, the required region is triangle ABC.

Attachments:
Similar questions