Math, asked by garimatimori, 5 months ago

Plot the point A (1,4), B (-2,2) and C (3,2) ,Join AB, BC and AC.​

Answers

Answered by XxJAHANGIRxX
0

Answer:

Answer:

Difference is ₹620.

Step-by-step explanation:

Given :-

Principal is ₹20000.

Rate of interest is 10%.

Time period is 3 years.

To find :-

Difference between the simple interest and compound interest.

Solution :-

For difference first we will find simple interest and compound interest.

So,

We know,

\boxed{\bold{Simple \: interest = \dfrac{P \times r \times t}{100}}}

Simpleinterest=

100

P×r×t

Where,

P is principal, r is rate of interest and t is time period.

Put all values :

\begin{gathered} \sf \longrightarrow Simple \: interest = \dfrac{20000 \times 10 \times 3}{100} \\ \\ \end{gathered}

⟶Simpleinterest=

100

20000×10×3

\begin{gathered} \sf \longrightarrow Simple \: interest = \dfrac{600000}{100} \\ \\ \end{gathered}

⟶Simpleinterest=

100

600000

\longrightarrow \purple{\boxed{\sf \bold{Simple \: interest = 6000}}\star}⟶

Simpleinterest=6000

Thus,

Simple interest is ₹6000.

Interest is compounded annually.

So,

Compound interest = Amount - Principal

Or,

\boxed{\bold{Compound \: interest = \Bigg\{ P \bigg( 1 + \dfrac{r}{100} \bigg) ^{n} \Bigg\} - P}}

Compoundinterest={P(1+

100

r

)

n

}−P

Put the values :

\begin{gathered} \sf \longrightarrow Compound \: interest = \Bigg\{ 20000 \times \bigg(1 + \dfrac{10}{100} \bigg) ^{3} \Bigg\} - 20000 \\ \\ \end{gathered}

⟶Compoundinterest={20000×(1+

100

10

)

3

}−20000

\begin{gathered} \sf \longrightarrow Compound \: interest = \Bigg\{ 20000 \times \bigg( \dfrac{100 + 10}{100} \bigg) ^{3} \Bigg\} - 20000 \\ \\ \end{gathered}

⟶Compoundinterest={20000×(

100

100+10

)

3

}−20000

\begin{gathered} \sf \longrightarrow Compound \: interest = \Bigg\{ 20000 \times \bigg(\dfrac{110}{100} \bigg)^{3} \Bigg\} - 20000 \\ \\ \end{gathered}

⟶Compoundinterest={20000×(

100

110

)

3

}−20000

\begin{gathered} \sf \longrightarrow Compound \: interest = \Bigg\{20000 \times \dfrac{1331000}{1000000} \Bigg\} - 20000 \\ \\ \end{gathered}

⟶Compoundinterest={20000×

1000000

1331000

}−20000

\begin{gathered} \sf \longrightarrow Compound \: interest = \Bigg\{ 20000 \times 1.331 \Bigg\} - 20000 \\ \\ \end{gathered}

⟶Compoundinterest={20000×1.331}−20000

\begin{gathered} \sf \longrightarrow Compound \: interest = 26620 - 20000 \\ \\ \end{gathered}

⟶Compoundinterest=26620−20000

\begin{gathered} \longrightarrow \red{\boxed{\sf \bold{Compound \: interest = 6620}}\star} \\ \\ \end{gathered}

Compoundinterest=6620

Thus,

Compound interest is ₹6620

Now,

Difference = Compound interest - Simple interest

\sf \longrightarrow 6620 - 6000⟶6620−6000

\sf \longrightarrow \bold{620}⟶620

Therefore,

Difference is ₹620.☺☺☺☺

Similar questions