Math, asked by sarthakgarg1005, 1 month ago

pls and answer both parts in detail

Attachments:

Answers

Answered by hasandeen123
0

Step-by-step explanation:

make me as brainlyest it is just equal not other that thar

Attachments:
Answered by mathdude500
1

\large\underline{\sf{Given \:Question - }}

Prove that

 \sf \:  \: (1). \:  \: sin2x + 2sin4x + sin6x = 4 {cos}^{2}xsin4x

 \sf \:  \: (2). \:  \: cos\bigg(\dfrac{3\pi}{4}  + x \bigg) - cos\bigg(\dfrac{3\pi}{4}   - x\bigg) =  -  \:  \sqrt{2}  \: sinx

\large\underline{\sf{Solution-1}}

Consider,

\rm :\longmapsto\:sin2x + 2sin4x + sin6x

can be re-arranged as

\rm \:  =  \:(sin6x + sin2x) + 2sin4x

We know,

 \boxed{ \bf{ \: sinx + siny = 2sin\bigg(\dfrac{x + y}{2}  \bigg)cos\bigg(\dfrac{x - y}{2}  \bigg)}}

Using this identity, we get

\rm \:  =  \:2sin\bigg(\dfrac{6x + 2x}{2}  \bigg)cos\bigg(\dfrac{6x - 2x}{2}  \bigg) + 2sin4x

\rm \:  =  \:2sin\bigg(\dfrac{8x}{2}  \bigg)cos\bigg(\dfrac{4x}{2}  \bigg) + 2sin4x

\rm \:  =  \:2sin4xcos2x + 2sin4x

\rm \:  =  \:2sin4x(1 + cos2x)

We know,

 \boxed{ \bf{ \: 1 + cos2x =  {2cos}^{2}x}}

\rm \:  =  \:2sin4x(2 {cos}^{2}x)

\rm \:  =  \:4sin4x \:  {cos}^{2}x

Hence,

 \boxed{ \bf{ \: sin2x + 2sin4x + sin6x = 4 {cos}^{2}xsin4x}}

 \red{\large\underline{\sf{Solution-2}}}

Consider,

 \rm :\longmapsto\: cos\bigg(\dfrac{3\pi}{4}  + x \bigg) - cos\bigg(\dfrac{3\pi}{4}   - x\bigg)

We know,

 \boxed{ \bf{ \: cosx - cosy = -  \:  2sin\bigg(\dfrac{x + y}{2}  \bigg)sin\bigg(\dfrac{x - y}{2}  \bigg)}}

Using this identity, we get

\rm \:  =  \: - 2sin\bigg(\dfrac{\dfrac{3\pi}{4}  + x + \dfrac{3\pi}{4}  - x}{2}  \bigg)sin\bigg(\dfrac{\dfrac{3\pi}{4}  + x -  \dfrac{3\pi}{4} + x}{2}  \bigg)

\rm \:  =  \: - 2sin\bigg(\dfrac{\dfrac{3\pi}{4} +  \dfrac{3\pi}{4} }{2}  \bigg)sin\bigg(\dfrac{x + x}{2}  \bigg)

\rm \:  =  \: - 2sin\bigg(\dfrac{2 \times \dfrac{3\pi}{4}  }{2}  \bigg)sin\bigg(\dfrac{2x}{2}  \bigg)

\rm \:  =  \: - 2sin\bigg(\dfrac{3\pi}{4}  \bigg)sinx

\rm \:  =  \: - 2sin\bigg(\pi - \dfrac{\pi}{4}  \bigg)sinx

\rm \:  =  \: - 2sin\bigg(\dfrac{\pi}{4}  \bigg)sinx

\rm \:  =  \: - 2 \times \dfrac{1}{ \sqrt{2} } \times sinx

\rm \:  =  \: -  \sqrt{2}   \times  \sqrt{2} \times \dfrac{1}{ \sqrt{2} } \times sinx

\rm \:  =  \: -  \sqrt{2} \:  sinx

Hence,

 \boxed{ \bf{ \:  cos\bigg(\dfrac{3\pi}{4}  + x \bigg) - cos\bigg(\dfrac{3\pi}{4}   - x\bigg) =  -  \:  \sqrt{2}  \: sinx}}

Additional Information :-

 \boxed{ \bf{ \: sinx - siny = 2cos\bigg(\dfrac{x + y}{2}  \bigg)sin\bigg(\dfrac{x - y}{2}  \bigg)}}

 \boxed{ \bf{ \: cosx  + cosy = 2cos\bigg(\dfrac{x + y}{2}  \bigg)cos\bigg(\dfrac{x - y}{2}  \bigg)}}

 \boxed{ \bf{ \: 2cosxcosy = cos(x + y) + cos(x - y)}}

 \boxed{ \bf{ \: 2sinxsiny = cos(x - y) - cos(x + y)}}

 \boxed{ \bf{ \: 2sinxcosy = sin(x + y) + sin(x - y)}}

Similar questions