Math, asked by Wallie, 1 year ago

pls ans fast. multiple correct. For which functions dy/dx = d^2y/dx^2.
does not hold true?
A) sinx = y B) e^x = y. C) cosx = y. D) x^2 = y​

Answers

Answered by Raghul190602
2

Answer:

ans d

  • double differentiation of x 2 is only a constant and never can be a variable
Answered by ujalasingh385
0

Answer:

A)y=Sinx ;C)y=Cosx and D)y=x^{2}

Step-by-step explanation:

In this question,

We have to verify for which functions

\frac{\mathrm{d} y}{\mathrm{d} x}\neq\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} does not holds true.

A)y=Sinx

\frac{\mathrm{d} y}{\mathrm{d} x}=Cosx

\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}=-Sinx

Hence,\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}

B)y=e^{x}

\frac{\mathrm{d} y}{\mathrm{d} x}=e^{x}

\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}=e^{x}

Hence,\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}

C)y=Cosx

\frac{\mathrm{d} y}{\mathrm{d} x}=-Sinx

\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}=-Cosx

Hence,\frac{\mathrm{d} y}{\mathrm{d} x}\neq\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}

D)y=x^{2}

\frac{\mathrm{d} y}{\mathrm{d} x}=2x

\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}=2

Hence,\frac{\mathrm{d} y}{\mathrm{d} x}\neq\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}

Therefore For y=Cosx;y=Sinx and y=x^{2}

\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} does not holds true.

Similar questions