Math, asked by pk2032006, 2 days ago

pls ans fast PlsPlsPlsPlsPls ​

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\  \\  \frac{sin \: A - cos \: A - 1}{sin \:A + cos \:  A - 1}  \\  \\ so \: conjugate \: of \:  \: sin \: A + cos \: A - 1 \\ is \:  \: sin \: A - cos \: A +1 \\  \\ so \: by \: conjugate \: method \\ we \: have \\  \\  =  \frac{sin \:A - cos \:A - 1  }{sin \:A + cos \:A - 1  }  \times  \frac{sin \: A - cos \:A + 1 }{sin \: A - cos \: A + 1}  \\  \\ we \: know \: that \\  \\ (a - b - c)(a - b + c) = a {}^{2}  + b {}^{2}  - c {}^{2}  - 2ab \\  \\ (a + b - c)(a - b + c) = a {}^{2}  - b {}^{2}  - c {}^{2}  + 2bc \\  \\ thus \: then \: accordingly \\  \\  =  \frac{sin {}^{2} \: A + cos {}^{2}  \:A - 1 - 2.sin \: A.cos \:  A }{sin \:  {}^{2}  \:A - cos {}^{2}   \: A - 1 + 2.cos \: A}  \\  \\ we \: have \\ sin {}^{2}  \: A + cos {}^{2}  \: A = 1 \\  \\ thus \: then \\  \\  =  \frac{1 - 1 - 2.sin \:A.cos \:  A}{1 - cos {}^{2}  \: A - cos {}^{2}  \:A - 1 + 2.cos \:A  }  \\  \\  =  \frac{ - 2.sin \: A.cos \:A }{ - 2.cos {}^{2}  \:A + 2.cos \: A }  \\  \\  \\  =  \frac{ - 2.sin \:A.cos \: A }{ - 2.cos \: A(cos \:A - 1) }  \\  \\  \\  =  \frac{sin \: A}{cos \: A - 1}  \\  \\  \\  =  \frac{sin \: A}{cos \:A - 1 }  \times  \frac{cos \:A + 1 }{cos \: A + 1}  \\  \\  =  \frac{sin \: A(cos \:A + 1) }{cos {}^{2} \:  A - 1}  \\  \\  \\  =  \frac{sin \: A(1 + cos \:A) }{ - sin {}^{2} \: A }  \\  \\  =  \frac{1 + cos \: A}{( - sin \:A) }

 \\  =  \frac{1}{( - sin \: A)}  +  \frac{cos \: A}{ (- sin \:A) }  \\  \\  =  - cosec \: A - cot \: A \\  \\  =  - (cosec \: A + cot \: A)

Similar questions