Math, asked by komalgarg11, 5 months ago

pls ans it fast
Class 11 ​

Attachments:

Answers

Answered by Dd19
1

Step-by-step explanation:

Lim  \:  \frac{ \sqrt{x} }{ \sqrt{x +  \sqrt{x +  \sqrt{x} } } }

Lim  \frac{1}{ \frac{ \sqrt{x +  \sqrt{x +  \sqrt{x} } } }{ \sqrt{x} } }

Lim  \frac{1}{ \sqrt{ \frac{x +  \sqrt{x +  \sqrt{x} } }{x} } }

Lim  \frac{1}{ \sqrt{ \frac{x}{x} +  \frac{ \sqrt{x +  \sqrt{x} } }{x}  } }

Lim  \frac{1}{ \sqrt{1 +  \frac{ \sqrt{x +  \sqrt{x} } }{ \sqrt{ {x}^{2} } } } }

Lim  \frac{1}{ \sqrt{1 + \sqrt{ \frac{x +  \sqrt{x} }{ {x}^{2} } }  } }

Lim  \frac{1}{ \sqrt{1 +  \sqrt{ \frac{x}{ {x}^{2} } +  \frac{ \sqrt{x} }{ {x}^{2} }  } } }

Lim  \frac{1}{ \sqrt{1 +  \sqrt{ \frac{1}{x}  +  \frac{1}{x \sqrt{x} } } } }

Lim  \frac{1}{ \sqrt{1 +  \sqrt{ \frac{1}{x} +  \frac{1}{ {x}^{3/2 } }  } } }

Putting value

As x tends to infinity,  \frac{1}{{x}^{n}} tends to zero

 =\frac{1}{ \sqrt{1 +  \sqrt{0 + 0} } }

 =\frac{1}{ \sqrt{1} }

 =1

Hope I'm correct

Similar questions