Math, asked by meghana9443, 10 months ago

Pls ans my que fast.....
Ist ans and the best will be marked as brainliest...
I have exam​

Attachments:

Answers

Answered by Anonymous
8

Check the attachment.

Attachments:
Answered by Anonymous
203

\large{\underline{\underline{\mathfrak{\green{\sf{QUESTION:-}}}}}}.

  • If the equation S = \:(ax^2+2hxy+by^2+2gx+2fy+c)\:=\:0 represent a pair of parallel straight line , then show that ,

\implies\:(1)\:h\:=ab

\implies\:(2)\:af^2\:=\:bg^2

\large{\underline{\underline{\mathfrak{\bf{SOLUTION:-}}}}}.

\large{\underline{\underline{\mathfrak{\sf{Given\:Here:-}}}}}.

  • Combine Equation of two parallel straight line S = \:(ax^2+2hxy+2gx+2fy+c)\:=\:0

\large{\underline{\underline{\mathfrak{\sf{Show\:that:-}}}}}.

  • \:h\:=\:ab

  • \:af^2\:=\:bg^2

  • Distance between two parallel straight line will be \:2\sqrt{\frac{(g^2-ac)}{a(a+b)}}\:=\:2\sqrt{\frac{(f^2-bc)}{a(a+b)}}

\large{\underline{\underline{\mathfrak{\sf{Explanation:-}}}}}.

Let,

  • L1 and L2 are two parallel straight

So, equation will be straight line

  • \:(a1x+b1y+c1)\:=\:0....(1)

  • \:(a1x+b1y+c2)\:=\:0....(2)

So ,Combination of two straight line will be

\:(a1x+b1y+c1)(a1x+b1y+c2)\:=\:(ax^2+by^2+2hxy+2gx+2fy+c)

\leadsto\:x^2a1^2\:+\:2(a1b1)xy\:+\:b1^2y^2\:+\:a1(c1+c2)x\:+\:b1(c1+c2)y\:+\:c1c2\:=\:(ax^2+by^2+2hxy+2gx+2fy+c)

Compare Coefficient of x^2, y^2, x, y, Constant part

we find here ,

  • \:a\:=\:a1^2....(3)

  • \:b\:=\:b1^2.....(4)

  • \:a1b1\:=\:h....(5)

  • \:2g\:=\:a1(c1+c2)....(6)

  • \:2f\:=\:b1(c1+c2)...(7)

  • \:c1c2\:=\:c....(8)

now, we show that ,

Case (1):-

  • \:h\:=\:ab

We take , by equation (5)

\leadsto\:h\:=\:a1b1

by equation (3) and (4) , we get there

  • a1 = a
  • b1 = b

So,

\leadsto\boxed{\boxed{\:h\:=\:ab}}

Case(2):-

  • \:af^2\:=\:bg^2

we take , by equation (3) and (7)

\leadsto\:af^2\:=\:a1^2\times(\frac{b1(c1+c2)}{2})^2

\leadsto\:af^2\:=\:b1^2\times\:(\frac{a1(c1+c2)}{2})^2

but, by equation(4) and (7) ,

\leadsto\boxed{\boxed{\:af^2\:=\:bg^2}}

Case(3):-

  • Distance between two parallel straight line will be \:2\sqrt{\frac{(g^2-ac)}{a(a+b)}}\:=\:2\sqrt{\frac{(f^2-bc)}{a(a+b)}}

we know here ,

[ Distance between two parallel straight line ]

\large\boxed{\boxed{\:Distance\:=\frac{(|c1-c2|)}{\sqrt{(a1^2+b1^2)}}}}

\leadsto\:Distance\:=\frac{\sqrt{(c1+c2)^2-4c1c2)}}{\sqrt{a+b}}....(9)

Keep value by equation (6) ,

\leadsto\:Distance\:=\frac{(\frac{2g}{a1})^2-4c}{\sqrt{(a+b)}}

\leadsto\:Distance\:=\frac{(\frac{4g^2}{a}-4c}{\sqrt{(a+b)}}

\leadsto\:Distance\:=\frac{(4g^2-4ac}{\sqrt{a(a+b)}}

\leadsto\boxed{\boxed{\:Distance\:=\:2\frac{(4g^2-4ac)}{\sqrt{a(a+b)}}}}....(10)

Again, we take by equation (7) keep in (9)

we get ,

\leadsto\:Distance\:=\frac{(\frac{2f}{b1})^2-4c}{\sqrt{(a+b)}}

\leadsto\:Distance\:=\frac{\frac{(4f^2)}{b}-4c}{\sqrt{(a+b)}}

\leadsto\:Distance\:=\frac{(4f^2-4bc)}{\sqrt{b(a+b)}}

\leadsto\boxed{\boxed{\:Distance\:=\:2\frac{(f^2-bc)}{\sqrt{b(a+b)}}}}..(11)

by equation (10) and (11) ,

we find here

\large\boxed{\boxed{\:2\frac{(g^2-ac)}{\sqrt{a(a+b)}}\:=\:2\frac{(f^2-bc)}{\sqrt{b(a+b)}}}}

here three cases are proved

___________________

Similar questions