Math, asked by hinaasharafhina, 11 months ago

pls ans the question ​

Attachments:

Answers

Answered by suru69
3

-4+4√3i

rationalise from 1-i√3 in numerator and denominator then by furtur solving you will get the answer

thank you

Answered by Sharad001
72

Question :-

 \sf convert \: into \: (a +  \iota \: b )\: form \:, to \:  \frac{-16}{1 +  \iota \sqrt{3} }  \\

Answer :-

\to \boxed{ -4  +   \iota \:(  4 \sqrt{3} )} \\  \\ \sf it \: is \: in \: the \: form \: of \: a +  \iota \: b \\  \\ \sf here \: a = -4 \:  \: and \: b =   4 \sqrt{3}  \:

Solution :-

We have ,

 \to \:  \frac{-16}{1 +  \iota \sqrt{3} }  \\  \\  \sf \: rationalising \: by \: 1 -  \iota \sqrt{3}  \\  \\  \to \:  \frac{-16}{1 +  \iota \sqrt{3} }  \times  \frac{ 1 -  \iota\sqrt{3} }{ 1- \iota \sqrt{3}  }  \\  \\  \to \:  \frac{-16(1 -  \iota \sqrt{3}) }{(1 +  \iota \sqrt{3} )(1 -  \iota \sqrt{3} )}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} } \\  \therefore \\  \to \:  \frac{-16(1 -  \iota \sqrt{3} )}{ {(1)}^{2}  -  {( \iota \sqrt{3} )}^{2} }  \\  \\  \to \:  \frac{-16(1 -  \iota \sqrt{3}) }{1 - 3 { \iota}^{2} }  \\  \\  \because \:   \iota =  \sqrt{ - 1}  \\  \therefore \:   { \iota}^{2}  =  - 1 \\  \\  \to \:  \frac{-16(1 -  \iota \sqrt{3} )}{1 - ( - 3)}  \\  \\  \to \:  \frac{-16(1 -  \iota \sqrt{3} )}{1 + 3}  \\  \\  \to \:  \frac{-16(1 -  \iota \sqrt{3}) }{4}  \\  \\  \to \: 4(1 -  \iota \sqrt{3} ) \\  \\  \to \boxed{ -4  +   \iota \:(  4 \sqrt{3} )} \\  \\ \sf it \: is \: in \: the \: form \: of \: a +  \iota \: b \\  \\ \sf here \: a = -4 \:  \: and \: b =  4 \sqrt{3}

Similar questions