Math, asked by yashika8959, 10 months ago

pls ans this ques.....

Attachments:

Answers

Answered by Anonymous
2

Answer:

\large\boxed{\sf{\dfrac{5 \sqrt{6} + 6 \sqrt{5}   +  \sqrt{330} }{60} }}

Step-by-step explanation:

Given a fraction such that,

 \dfrac{1}{ \sqrt{5}  +  \sqrt{6} -  \sqrt{11}  }

Let's rationalize its denominator.

 =  \frac{1}{( \sqrt{5}  +  \sqrt{6}) -  \sqrt{11}  }  \times  \frac{( \sqrt{5} +  \sqrt{6}  ) +  \sqrt{11} }{( \sqrt{5} +  \sqrt{6}) +  \sqrt{11}   }  \\  \\  =  \frac{ \sqrt{5}  +  \sqrt{6}  +  \sqrt{11} }{(( \sqrt{5}  +  \sqrt{6}) +  (\sqrt{11} ))(( \sqrt{5}  +  \sqrt{6}) - ( \sqrt{11}   ))}  \\  \\  =  \frac{ \sqrt{5} +  \sqrt{6}   +  \sqrt{11} }{ {(  \sqrt{5}  +  \sqrt{6}) }^{2}  -  {( \sqrt{11} )}^{2} }  \\  \\  =  \frac{ \sqrt{5}  +  \sqrt{6} +  \sqrt{11}  }{ {( \sqrt{5}) }^{2} +  {( \sqrt{6} )}^{2}   + 2( \sqrt{5})( \sqrt{6}  ) -  {( \sqrt{11} )}^{2} }  \\  \\  =  \frac{ \sqrt{5}  +  \sqrt{6}  +  \sqrt{11} }{5 + 6 + 2 \sqrt{30}  - 11}  \\  \\  =  \frac{ \sqrt{5} +  \sqrt{6}   +  \sqrt{11} }{11 + 2 \sqrt{30}  - 11}  \\  \\  =  \frac{ \sqrt{5}  +  \sqrt{6}  +  \sqrt{11} }{2 \sqrt{30} }  \\  \\  =   \frac{ \sqrt{5}  +  \sqrt{6} +  \sqrt{11}  }{2 \sqrt{30} }  \times  \frac{ \sqrt{30} }{ \sqrt{30} }  \\  \\  =  \frac{ \sqrt{30} ( \sqrt{5}  +  \sqrt{6} +  \sqrt{11}  )}{2 { (\sqrt{30} )}^{2} }  \\  \\  =   \frac{ \sqrt{150}  +  \sqrt{180}  +  \sqrt{330} }{2(30)}  \\  \\  =  \frac{ \sqrt{25 \times 6} +  \sqrt{36 \times 5}  +  \sqrt{330}  }{60  }  \\  \\  =  \frac{5 \sqrt{6} + 6 \sqrt{5}   +  \sqrt{330} }{60}

Similar questions