Math, asked by 08navya2, 1 month ago

Pls Ans. this ques. and give the explanation too...I will mark the best ans as the brainliest. :D

Attachments:

Answers

Answered by Anonymous
4

To solve :-

 :  \longrightarrow \tt{5y -  \dfrac{y + 1}{2}  =  \dfrac{y - 1}{4}  + y}

‎ ‎ ‎

Solution :-

 :  \implies \tt{5y -  \dfrac{y + 1}{2}  =  \dfrac{y - 1}{4}  + y}

Transporting of LHS and RHS

{ :  \implies \tt5y - y=  \dfrac{y - 1}{4}  +   \dfrac{y + 1}{2}  }

Simplifying LHS and RHS

{ :  \implies \tt 4 y=  \dfrac{y - 1}{4}  +   \dfrac{y + 1}{2}  }

Taking LCM

{ :  \implies \tt 4 y=  \dfrac{y - 1 + 2(y + 1)}{4} }

{ :  \implies \tt 4 y=  \dfrac{y - 1 + 2y + 2}{4} }

{ :  \implies \tt 4 y=  \dfrac{3y + 1}{4} }

Now cross multiplication

{ :  \implies \tt (4 y)4=(3y + 1) }

{ :  \implies \tt 8y=3y + 1}

Transporting 3y from RHS to LHS

{ :  \implies \tt 8y - 3y=  1}

{ :  \implies \tt 5y=  1}

 \boxed{ \purple{ :  \implies  \tt y=  \dfrac{ 1}{5}}}

This is the required answer..!

Similar questions