Math, asked by delliesedathua07, 7 months ago

Pls ans this question ​

Attachments:

Answers

Answered by soniriya29967
1

hope you understand...

method is same but value is changed so you can put that value which you have instead of these, OK...

Attachments:
Answered by Rubellite
187

Answer:

\huge{\boxed{\sf{\red{x = 270°}}}}

Step-by-step explanation:

\displaystyle{\sf{Draw\:a\:parallel\:line\:on\:M.}}

\displaystyle{\sf{ \angle PXA + \angle XMA = 180°}}

|\displaystyle{\sf{ \because the\:sum\:of\:co-interior\:angle\:is\:180°}}

\implies\displaystyle{\sf{ 50° + \angle XMA = 180°}}

\implies\displaystyle{\sf{ \angle XMA = 180°-50°}}

\implies\displaystyle{\sf{ \angle XMA = 130°}}

\displaystyle{\sf{ \angle AMY= \angle MYR = 120°}}

|\displaystyle{\sf{ \because Alternate\:Interior\:angle}}

\longrightarrow\displaystyle{\sf{ \angle AMY+ \angle XMA = (x-20)°}}

\longrightarrow\displaystyle{\sf{ 130°+ 120°= (x-20)°}}

\longrightarrow\displaystyle{\sf{ 250°= (x-20)^°}}

\longrightarrow\displaystyle{\sf{ 250°= (x-20)°}}

\longrightarrow\displaystyle{\sf{ 250°+ 20°= (x)°}}

\Rightarrow{\boxed{\sf{\red{ 270°= (x)°}}}}

Hence, the value of x is equal to 270°

__________________________

Attachments:
Similar questions