Math, asked by rajputrishabh1410, 10 months ago

Pls ❣️ ans this Question is (prove this)

Attachments:

Answers

Answered by Anonymous
1

(64/125)-⅔ + 1/(256/625)¼ + √25/³√64

= (4³/5³)-⅔ + 1/(4⁴/5⁴)¼ + 5/4

= 4-²/5-² + 1/4/5 + 5/4

= 5²/4² + 5/4 + 5/4

= 25/16 + 5/4 + 5/4

= 25+20+20/16

= 65/16

Hope it helps!!

Thank you

Answered by ishwarsinghdhaliwal
3

 ({ \frac{64}{125} })^{ \frac{ - 2}{3} }  +  \frac{1}{ (\frac{256}{625} )^{ \frac{1}{4} }  }  +  \frac{ \sqrt{25} }{ \sqrt[3]{64} }  = \frac{65}{16}  \\ LHS \\  =  >  (\frac{125}{64} ) ^{ \frac{2}{3} }  +  \frac{1}{ (\frac{4}{5}) ^{4 \times  \frac{1}{4} }  }  +  \frac{5}{4}  \\ =  >  ( \frac{5}{4} ) ^{3 \times  \frac{2}{3} }  +  \frac{1}{ \frac{4}{5} }  +  \frac{5}{4}  \\ =  >   (\frac{5}{4} ) ^{2}  +  \frac{5}{4}  +  \frac{5}{4}  \\ =  >   \frac{25}{16}  + \frac{5}{4}  +  \frac{5}{4} \\  =  >  \frac{25 + 20 + 20}{16}  \\  =  >  \frac{65}{16}  =RHS

Hence, proved.

Similar questions