Math, asked by PythonNex, 1 month ago

Pls Ans this Question with Solution

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \:  \\ sin \: θ + sin {}^{2}  \: θ + sin {}^{3}  \: θ = 1 \\ ie \:  \: sin \: θ + sin {}^{3}  \: θ = 1 - sin {}^{2}  \: θ \\ ie \: sin \: θ + sin {}^{3} θ = cos {}^{2} θ \:  \:  \:  \:  \:  \: (1) \\ since \: cos {}^{2} θ = 1 - sin {}^{2} θ \\  \\ squaring \: (1)  \: we \: get \\ sin {}^{2}  \: θ + (sin {}^{3}  \: θ) {}^{2}  + 2.sin \: θ.sin  {}^{3}  \: θ = (cos {}^{2} θ) {}^{2}  \\  = sin {}^{2} θ + (sin {}^{2} θ) {}^{3}  + 2.sin {}^{4}  \: θ   = cos {}^{4}  \: θ \\  \\  = (1 - cos {}^{2}  \: θ) + (1 - cos {}^{2} θ) {}^{3}  + 2.(sin {}^{2} θ) {}^{2}  \\  = (1 - cos {}^{2} θ) + (1 - cos {}^{2}  \: θ) {}^{3}  + 2.(1 - cos {}^{2} θ) {}^{2}  \\ since \: 1 - cos {}^{2}  \: θ = sin {}^{2} θ \\  \\  = 1 - cos {}^{2} θ + (1) {}^{3}  - (cos  {}^{2} \: θ) {}^{3}  - 3.cos {}^{2} θ(1 - cos {}^{2} θ) + 2(1 + cos {}^{4} θ - 2.cos  {}^{2} \: θ) \\  = 1 - cos {}^{2} θ + 1 - cos {}^{6}  \: θ - 3.cos {}^{2} θ + 3.cos {}^{4}  \: θ + 2 + 2cos {}^{4}  \: θ - 4.cos {}^{2} θ \\  \\  = 1 + 1 + 2 - cos {}^{2} θ - 3.cos {}^{2} θ - 4.cos {}^{2} θ + 3.cos {}^{4}  \: θ + 2.cos {}^{4}  \: θ - cos {}^{6}  \: θ \\  = 4 - 8.cos {}^{2} θ + 5.cos {}^{4} θ - cos {}^{6}  \: θ = cos {}^{4}  \: θ

ie \:  \: cos {}^{6}  \: θ + 8.cos {}^{2}  \: θ + cos {}^{4}  \: θ - 5.cos {}^{4}  \: θ = 4 \\ cos \:  {}^{6}  \: θ  - 4.cos {}^{4}  \: θ + 8.cos {}^{2}  \: θ = 4 \\  \\ so \: comparing \: with \: to \: find \: part \:  \\ we \: get \\ x = 4

Similar questions