Math, asked by vaishu67, 1 year ago

pls ans to be brainlist

Attachments:

Answers

Answered by siddhartharao77
8
Let the given equation be f(x) = 4x^2 - 8x - 6.

Now,

We need to find the zero of the polynomial.

Put f(x) = 0

4x^2 - 8x - 6 = 0

Compare with ax^2 + bx + c = 0, we get a = 4, b = -8, c = -6.

(1)

x = \frac{-b + \sqrt{b^2 - 4ac} }{2a}

= \frac{-(-8) + \sqrt{(-8)^2 - 4 * 4 * (-6)} }{2(4)}

= \frac{8 + \sqrt{160} }{8}

= \frac{8 + 4 \sqrt{10} }{8}

= \frac{4(2 + \sqrt{10} )}{8}

= \frac{2 + \sqrt{10} }{2}



(2)

x = \frac{-b - \sqrt{b^2 - 4ac} }{2a}

= \frac{-(-8) - \sqrt{(-8)^2 - 4 * 4 * (-6)} }{2 * 4}

= \frac{8 - \sqrt{160} }{8}

= \frac{8 - 4 \sqrt{10} }{8}

= \frac{4(2 - \sqrt{10} )}{8}

= \frac{2 - \sqrt{10} }{2}


Therefore the zeroes of the given quadratic polynomial are : 

 \frac{2 + \sqrt{10} }{2} , \frac{2 - \sqrt{10} }{2}


Verification:

(1)

Sum of roots : 

 \frac{2 + \sqrt{10} }{2} + \frac{2 - \sqrt{10} }{2}

 \frac{2 + \sqrt{10} + 2 - \sqrt{10} }{2}

 \frac{4}{2}

2.


Sum of roots:

= -b/a

= -(-8)/4

= 8/4

= 2.



(2)

Product of roots: 

 \frac{2 + \sqrt{10} }{2} * \frac{2 - \sqrt{10} }{2}

 \frac{(2 + \sqrt{10} )(2 - \sqrt{10}) }{2 * 2}

 \frac{2^2 - ( \sqrt{10})^2 }{4}

 \frac{4 - 10}{4}

 \frac{-6}{4}

 \frac{-3}{2}


Product of roots:

= c/a

= -6/4

= -3/2.


Hence the relationship between zeroes and coefficients is verified.


Hope this helps!

siddhartharao77: Gud luck!
Similar questions