Math, asked by deekshith12345, 1 year ago

Pls answer............​

Attachments:

Answers

Answered by Dhru016
4

hope this helps u...

Attachments:

deekshith12345: ThanQ
Dhru016: it's okay
Dhru016: please mark my answer as the brainliest
Answered by Swarup1998
36
\underline{\textsf{Solution :}}

\textsf{Now,}\:\frac{1}{(a+b+x)}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}

\to \frac{1}{a+b+x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}

\to \frac{x-(a+b+x)}{x(a+b+x)}=\frac{b+a}{ab}

\to \frac{x-a-b-x}{x(a+b+x)}=\frac{a+b}{ab}

\to \frac{-(a+b)}{x(a+b+x)}=\frac{a+b}{ab}

\to \frac{-1}{x(a+b+x)}=\frac{1}{ab}

\textsf{cancelling (a + b) from both sides}

\to x(a+b+x)=-ab

\to ax+bx+x^{2}+ab=0

\to x^{2}+ax+bx+ab=0

\to x(x+a)+b(x+a)=0

\to (x+a)(x+b)=0

\textsf{Either x + a = 0 or, x + b = 0}

\textsf{i.e., x = - a , - b}

\textsf{which is the required solution.}

Noah11: Neatly Answered Bhaiya :)
Similar questions