Math, asked by honalu, 10 months ago

pls answer correctly ​

Attachments:

Answers

Answered by Brainlyheros
2

Answer:

According to your question , the value of sinA = 3/4 , and we have to calculate the value of cosA and tanA

\sin(a)   =  \frac{prependicular}{hypotenuse}  =  \frac{3}{4}  \\  \\  =  \geqslant cos(a) =  \frac{base}{hypotenuse}  \\  \\  =  \geqslant we \: have \: to \: find \: base \: here \\  \\  =  \geqslant pythagoras \: theorem \\  \\  =  \geqslant (hypo) {}^{2}  = (base) {}^{2}  + (prependicular) {}^{2}  \\  \\  =  \geqslant (4) {}^{2}  = (b) {}^{2}  + (3) {}^{2}  \\  \\  =  \geqslant 16 = b {}^{2}  + 9 \\  \\  =  \geqslant b {}^{2}  = 16 - 9 \\  \\  =  \geqslant b {}^{2}  = 7 \\  \\  =  \geqslant b =  \sqrt{7}  \\  \\  =  \geqslant now \: cos(a) =  \frac{base}{hypotenuse}  \\  \\  =  \geqslant cos(a) =  \frac{ \sqrt{7} }{4}  \\  \\  =  \geqslant tan(a) =  \frac{sin(a)}{cos(a)}  \\  \\  =  \geqslant tan(a) =  \frac{ \frac{3}{4} }{ \frac{ \sqrt{7} }{4} }  =  \frac{3}{4}  \times  \frac{4}{ \sqrt{7} }  \\  \\  =  \geqslant tan(a) =  \frac{3}{ \sqrt{7} }  \\  \\ \\   \\  =  \geqslant cos(a) =  \frac{ \sqrt{7} }{4} \:  and \: tan(a) =  \frac{3}{ \sqrt{7} }

Similar questions