Math, asked by honalu, 10 months ago

pls answer correctly​

Attachments:

Answers

Answered by Brainlyheros
2

Answer:

According to your question, here the value of secQ is given as 13/12

and we have to find other 5 T-ratios

Let AngleC = theta(Q)

So, According to Angle C =

ac = hypotenuse \\  \\ bc = base \\  \\ ab = prependicular

 \sec(c)  =  \frac{hypotenuse}{base}  =  \frac{ac}{bc}  =  \frac{13}{12}

Hypotenuse² = base² + prependicular²

13² = 12² + x²

169 = 144 + x²

x² = 169 - 144

x² = 25

x = 5

Prependicular = 5cm

Hypotenuse = 13cm

Base = 12cm

 \sin(c)  =  \frac{prependicular}{hypotenuse}  =  \frac{5}{13}  \\  \\  =  \geqslant  \cos(c)  =  \frac{base}{hypotenuse}  =  \frac{12}{13}  \\  \\  =  \geqslant  \tan(c)  =  \frac{prependicular}{base}  =  \frac{5}{12}  \\  \\  =  \geqslant  \csc(c)  =  \frac{1}{ \sin(c) }  =   \frac{1}{ \frac{5}{13}  }   =  \frac{13}{5} \\  \\  =  \geqslant  \sec(c)  =  \frac{1}{   \cos(c)   }  =  \frac{1}{ \frac{12}{13} }  =  \frac{13}{12}  \\  \\  =  \geqslant  \cot(c)  =  \frac{1}{ \tan(c) }  =  \frac{1}{ \frac{5}{12} }  =  \frac{12}{5}

Attachments:
Similar questions