Math, asked by honalu, 9 months ago

pls answer correctly ​

Attachments:

Answers

Answered by jkbeat
1

Answer:

I have explained in the photo. See this photo.

Attachments:
Answered by Brainlyheros
2

Answer:

According to your question,

3cotA = 4 and we have to check whether

 \frac{1 -  { \tan(a) }^{2} }{1 +  { \tan(a) }^{2} }  =  cos {}^{2} a -  {sin}^{2} a

,

So , let's start from the LHS

3cotA = 4

cotA = 4/3 and we know that

cot(a) =  \frac{1}{ \tan(a) }

so, tan(A) = 3/4

now putting the value of tan(A) in LHS

 \frac{1 -  \tan {}^{2} (a) }{1 +  \tan {}^{2} (a) }  =  \frac{1 - ( \frac{3}{4}) {}^{2}  }{1 + ( \frac{3}{4}) {}^{2}  }  \\  \\  =  \geqslant  \frac{1 -  \frac{9}{16} }{1 +  \frac{9}{16} }  \\  \\  =  \geqslant  \frac{ \frac{16 - 9}{16} }{ \frac{16 + 9}{16} }  =  \frac{ \frac{7}{16} }{ \frac{25}{16} }  =  \frac{7}{16}  \times  \frac{16}{25}  \\  \\  =  \geqslant  \frac{7}{25}

LHS = 7/25

Now , let's find the RHS

 \tan(a)  =  \frac{ \sin(a) }{ \cos(a) }  =  \frac{3}{4}

 \tan(a)  =  \frac{prependicular}{base}  =  \frac{3}{4}

Using Pythagoras theorem

H² = P² + B²

H² = 3² + 4²

H² = 9 + 16

H² = 25

Hypotenuse = 5cm , Prependicular = 3cm and base = 4cm

 \sin(a)  =  \frac{prependicular}{hypotenuse}  =  \frac{3}{5}  \\  \\  =  \geqslant  \cos(a)  =  \frac{base}{hypotenuse}  =  \frac{4}{5}

now \: putting \: the \: value \\  \\  =  \geqslant  \cos {}^{2} (a)  -  \sin {}^{2} (a)  \\  \\  =  \geqslant  (\frac{4}{5}) {}^{2}   - ( \frac{3}{5} ) {}^{2}  \\  \\  =  \geqslant  \frac{16}{25}  -  \frac{9}{25}  \\  \\  =  \geqslant  \frac{16 - 9}{25}  \\  \\  =  \geqslant  \frac{7}{25}  \\  \\  \\  =  \geqslant lhs = rhs(proved)

Similar questions