Math, asked by bintosep102008, 11 months ago

pls, answer correctly...

prove that sin A ( 1 + tan A ) + cos A ( 1 + cot A ) = sec A + cosec A

Answers

Answered by streetburner
0

Step-by-step explanation:

LHS =

sin A ( 1 + tan A ) + cos A ( 1 + cot A )

= sinA (1+tanA) + cosA(1+1/tanA)

= sinA (1+tanA) + cosA (tanA+1)/tanA

= (1+tanA) [sinA + cos²A/sinA]

= [sin²A + cos²A](CosecA + secA)

= (CosecA + secA) = RHS

Answered by Anonymous
8

Answer:

Step-by-step explanation:

LHS =

sin A ( 1 + tan A ) + cos A ( 1 + cot A )

= sinA (1+tanA) + cosA(1+1/tanA)

= sinA (1+tanA) + cosA (tanA+1)/tanA

= (1+tanA) [sinA + cos²A/sinA]

= [sin²A + cos²A](CosecA + secA)

= (CosecA + secA) = RHS

Similar questions