pls, answer correctly...
prove that sin A ( 1 + tan A ) + cos A ( 1 + cot A ) = sec A + cosec A
Answers
Answered by
0
Step-by-step explanation:
LHS =
sin A ( 1 + tan A ) + cos A ( 1 + cot A )
= sinA (1+tanA) + cosA(1+1/tanA)
= sinA (1+tanA) + cosA (tanA+1)/tanA
= (1+tanA) [sinA + cos²A/sinA]
= [sin²A + cos²A](CosecA + secA)
= (CosecA + secA) = RHS
Answered by
8
Answer:
Step-by-step explanation:
LHS =
sin A ( 1 + tan A ) + cos A ( 1 + cot A )
= sinA (1+tanA) + cosA(1+1/tanA)
= sinA (1+tanA) + cosA (tanA+1)/tanA
= (1+tanA) [sinA + cos²A/sinA]
= [sin²A + cos²A](CosecA + secA)
= (CosecA + secA) = RHS
Similar questions