Math, asked by carol54, 7 months ago

pls answer correctly with reasons.​

Attachments:

Answers

Answered by monalimodi263
0

Answer:

1. Given to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{dx}{x^2-16}⟶I=∫

x

2

−16

dx

\displaystyle\longrightarrow I=\int\dfrac{dx}{(x-4)(x+4)}⟶I=∫

(x−4)(x+4)

dx

Multiplying and dividing the integrand by 4 - (- 4) = 8,

\displaystyle\longrightarrow I=\dfrac{1}{8}\int\dfrac{8}{(x-4)(x+4)}\ dx⟶I=

8

1

(x−4)(x+4)

8

dx

\displaystyle\longrightarrow I=\dfrac{1}{8}\int\dfrac{(x+4)-(x-4)}{(x-4)(x+4)}\ dx⟶I=

8

1

(x−4)(x+4)

(x+4)−(x−4)

dx

\displaystyle\longrightarrow I=\dfrac{1}{8}\int\left(\dfrac{1}{x-4}-\dfrac{1}{x+4}\right)\ dx⟶I=

8

1

∫(

x−4

1

x+4

1

) dx

\displaystyle\longrightarrow I=\dfrac{1}{8}\big[\log|x-4|-\log|x+4|\big]+C⟶I=

8

1

[log∣x−4∣−log∣x+4∣]+C

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{8}\log\left|\dfrac{x-4}{x+4}\right|+C}}⟶

I=

8

1

log

x+4

x−4

+C

2. Given to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{dx}{2x-x^2}⟶I=∫

2x−x

2

dx

\displaystyle\longrightarrow I=\int\dfrac{dx}{x(2-x)}⟶I=∫

x(2−x)

dx

or,

\displaystyle\longrightarrow I=-\int\dfrac{dx}{(x+0)(x-2)}⟶I=−∫

(x+0)(x−2)

dx

Multiplying and dividing the integrand by 0 - (- 2) = 2,

\displaystyle\longrightarrow I=-\dfrac{1}{2}\int\dfrac{2}{x(x-2)}\ dx⟶I=−

2

1

x(x−2)

2

dx

\displaystyle\longrightarrow I=-\dfrac{1}{2}\int\dfrac{x-(x-2)}{x(x-2)}\ dx⟶I=−

2

1

x(x−2)

x−(x−2)

dx

\displaystyle\longrightarrow I=-\dfrac{1}{2}\int\left(\dfrac{1}{x-2}-\dfrac{1}{x}\right)\ dx⟶I=−

2

1

∫(

x−2

1

x

1

) dx

\displaystyle\longrightarrow I=-\dfrac{1}{2}\big[\log|x-2|-\log|x|\big]+C⟶I=−

2

1

[log∣x−2∣−log∣x∣]+C

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{2}\log\left|\dfrac{x}{x-2}\right|+C}}⟶

I=

2

1

log

x−2

x

+C

Similar questions