Pls answer dis question fast
I'll Mark u as brilint if Ur answer is correct
Note: if u give unnecessary answer then i ll Report if
Attachments:
Answers
Answered by
1
Answer:
Shown that: (Secθ + tanθ)/(Secθ - tanθ) = 1 + 2tan^2θ + 2.Secθ.tanθ
Step-by-step explanation:
(Secθ + tanθ)/(Secθ - tanθ)
={(1+Sinθ)/Cosθ}/{(1-Sinθ)/Cosθ}
=(1+Sinθ)/(1-Sinθ)
=(1+Sinθ)(1+Sinθ)/(1-Sinθ)(1+Sinθ) [multiplying both numerator and
denominator by (1+Sinθ)]
=(1+ Sin^2θ + 2Sinθ)/(1-Sin^2θ)
=(1+ Sin^2θ + 2Sinθ)/Cos^2θ [Since, Sin^2θ + Cos^2θ = 1]
=1/Cos^2θ + Sin^2θ/Cos^2θ + 2Sinθ/Cos^θ
=Sec^2θ + tan^2θ + 2.(1/Cosθ).(Sinθ/Cosθ)
=(1 + tan^2θ) + tan^2θ + 2.Secθ.tanθ [Since, Sec^2θ - tan^2θ = 1]
= 1 + 2tan^2θ + 2.Secθ.tanθ
Similar questions