Math, asked by huomian139, 9 months ago

Pls answer fast and correct no nonsense ​

Attachments:

Answers

Answered by Anonymous
107

✧ Question:

☞ If \sf{a = \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}} , \sf{b = \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}} , then the value of \mathtt{(a + b)^{2}}

✧ To Find:

☞ The value of \mathtt{(a + b)^{2}}

✧ Given:

☞ The value of :-

  • \sf{a = \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}}

  • \sf{b = \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}}

✧ We Know:

  • \it{(a + b)^{2} = a^{2} + 2ab + b^{2}}

  • \it{(a - b)^{2} = a^{2} - 2ab + b^{2}}

  • \it{a^{2} - b^{2} = (a + b)(a - b)}

  • \it{a \times a = a^{2}}

✧ Concept:

☞ By putting the value of a and b in the equation, we can find the value of \mathtt{(a + b)^{2}}.

✧ Solution:

☞ Given Equation:

\mathtt{(a + b)^{2}}

➜ Putting the value of a and b in the equation,

  • \sf{a = \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}}
  • \sf{b = \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}}

➜ we get,

\mathtt{\Rightarrow \left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} + \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right)^{2}}

➝ Using the identity:

\it{(a + b)^{2} = a^{2} + 2ab + b^{2}}

➝ we get,

\mathtt{\Rightarrow \left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right)^{2} + 2 \times \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \times \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \left(\dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right)^{2}}

\mathtt{\Rightarrow \left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right)^{2} + 2 \times \cancel{\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}} \times \cancel{\dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}} + \left(\dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right)^{2}}

\mathtt{\Rightarrow \left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right)^{2} + 2 + \left(\dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right)^{2}}

\mathtt{\Rightarrow \dfrac{\left(\sqrt{3} - \sqrt{2}\right)^{2}}{\left(\sqrt{3} + \sqrt{2}\right)^{2}} + 2 + \dfrac{\left(\sqrt{3} + \sqrt{2}\right)^{2}}{\left(\sqrt{3} - \sqrt{2}\right)^{2}}}

➝ Using the identity:

\it{(a - b)^{2} = a^{2} + 2ab + b^{2}}

and

\it{(a + b)^{2} = a^{2} + 2ab + b^{2}}

➝ we get,

\mathtt{\Rightarrow \dfrac{(\sqrt{3})^{2} - 2 \times \sqrt{3} \times \sqrt{2} +  (\sqrt{2})^{2}}{(\sqrt{3})^{2} + 2 \times \sqrt{3} \times \sqrt{2} + (\sqrt{2})^{2}} + 2 + \dfrac{(\sqrt{3})^{2} + 2 \times \sqrt{3} \times \sqrt{2} (\sqrt{2})^{2}}{(\sqrt{3})^{2} - 2 \times \sqrt{3} \times \sqrt{2} + (\sqrt{2})^{2}}}

\mathtt{\Rightarrow \dfrac{5 - 2\sqrt{6}}{5 + 2\sqrt{6}} + 2 + \dfrac{5 + 2\sqrt{6}}{5 - 2\sqrt{6}}}

LCM of the denominators is (5 + 2\sqrt{6})(5 - 2\sqrt{6})

\mathtt{\Rightarrow \dfrac{25 - 10\sqrt{6} + 24)(5 + 2\sqrt{6}) + (5 + 2\sqrt{6})(5 + 2\sqrt{6})}{(5 + 2\sqrt{6})(5 - 2\sqrt{6})}}

➝ Using the identity:

\it{a \times a = a^{2}}

➝ we get,

\mathtt{\Rightarrow \dfrac{(5 - 2\sqrt{6})^{2} + 2(5 - 2\sqrt{6})(5 + 2\sqrt{6}) + (5 + \sqrt{6})^{2}}{(5 + 2\sqrt{6})(5 - 2\sqrt{6})}}

➝ Using the identity:

\it{(a - b)^{2} = a^{2} + 2ab + b^{2}}

and

\it{(a + b)^{2} = a^{2} + 2ab + b^{2}}

➝ we get,

\mathtt{\Rightarrow \dfrac{25 - 20\sqrt{6} + 24 + 2 \times 5^{2} - (2\sqrt{6})^{2} + 25 + 20\sqrt{6} + 24}{5^{2} - (2\sqrt{6})^{2}}}

\mathtt{\Rightarrow \dfrac{25 - \cancel{20\sqrt{6}} + 24 + 2 \times 25 - 2 \times (25 - 24) + 25 + \cancel{20\sqrt{6}} + 24}{25 - 24}}

\mathtt{\Rightarrow 25 + 24 + 2 + 25 + 24}

\mathtt{\Rightarrow 100}

Hence, the value of \mathtt{(a + b)^{2}} is 100.

Extra Information:

  • (a^{2} + b^{2}) = (a + b)^{2} - 2ab

  • (a^{2} + b^{2} = (a - b)^{2} + 2ab

  • \bigg(x + \dfrac{1}{x}\bigg)^{2} = x^{2} + \bigg(\dfrac{1}{x}\bigg)^{2} + 2

  • \bigg(x - \dfrac{1}{x}\bigg)^{2} = x^{2} + \bigg(\dfrac{1}{x}\bigg)^{2} - 2

Answered by Ҡαηнα
53
  • thank the answer if u like it and it is helpful for you.

\huge\mathtt\pink{To\:\:Find\::-}

✒the value of ( a + b ) ²

\large\mathtt\red{A}\large\mathtt\blue{N}\large\mathtt\green{S}\large\mathtt\pink{W}\large\mathtt{E}\large\mathtt\purple{R}\large\mathtt\orange{:-}

a =

<strong>a</strong> =   \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

 =  \frac{( \sqrt{3} -  \sqrt{2} )( \sqrt{3} -  \sqrt{2} ) }{( \sqrt{3}  +  \sqrt{2} )( \sqrt{3} -  \sqrt{2}  }

 =  \frac{( \sqrt{3} -  \sqrt{2} ) {}^{2}  }{3 - 2}

 = (( \sqrt{3}) {}^{2}  + ( \sqrt{2}) {}^{2}   +  - 2( \sqrt{3})( \sqrt{2})

 = 3 + 2 - 2 \sqrt{6}

 = 5 - 2 \sqrt{6}

b =

<strong>b</strong> =   \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

 =  \frac{( \sqrt{3 } +  \sqrt{2} )( \sqrt{3}  +  \sqrt{2})  }{( \sqrt{3} -  \sqrt{2} )( \sqrt{3}  +  \sqrt{2} }

 =  \frac{( \sqrt{3}  +  \sqrt{2})  {}^{2} }{3 - 2}

 = (( \sqrt{3} ) {}^{2}  +  \:  \:  ( \sqrt{2}) {}^{2}   + 2( \sqrt{3} )( \sqrt{2})

 = 3 + 2 + 3 \sqrt{6}

 = 5 + 2 \sqrt{6}

✒NOW,

a { \: }^{2}  +  {b \: }^{2}

  • we know that

(x + y) {}^{2}  = x {}^{2}  + y {}^{2} + 2xy

 =  &gt; x {}^{2}  + y {}^{2}  = (x + y) {}^{2}  - 2xy

  • if we take X = a and y = b then

 {a}^{2} +   {b}^{2}

 = (a + b) {}^{2}  - 2ab

 = (5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6}) {}^{2}

 - 2((5 + 2 \sqrt{6} )(5 - 2 \sqrt{6} ))

 = (10) {}^{2}  - 2(25 - 24)

  • Here we use identity

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 = 100 - 2

&lt;font color = blue&gt;

 = 98

&lt;font color = purple&gt;

_____________

hope it help uu

ŤHĀÑKŠ

Similar questions