Math, asked by sbj18, 9 months ago

pls answer fast
determinants lesson​

Attachments:

Answers

Answered by Anonymous
26

\huge{\underline{\sf{Given\: question:-}}}

\left|\begin{array}{ccc}a + x & a - x & a - x \\a - x&a + x&a - x\\a-x &a-x &a+x \end{array}\right| = 0

\huge{\underline{\sf{Solution:-}}}

=\left|\begin{array}{ccc}a + x & a - x & a - x \\a - x&a + x&a - x\\a-x &a-x &a+x \end{array}\right|

=\left|\begin{array}{ccc}3a + x & 3a - x & 3a - x \\a - x&a + x&a - x\\a-x &a-x &a+x \end{array}\right|

 \to {C'}_{1} = {C}_{1} + {C}_{2} + {C}_{3} \\

= (3a - x)\left|\begin{array}{ccc}1 & 1 & 1 \\a - x&a + x&a - x\\a-x &a-x &a+x \end{array}\right|

=(3a - x)\left|\begin{array}{ccc}1 & 1 & 1 \\a - x&a + x&a - x\\0 &0 &2x \end{array}\right|

 \to { R'}_{3} = { R}_{3}  - { R}_{1}\\

=(3a - x)\bigg[2x \left| \begin{array}{c c} 1 & a - x \\ 1 & a + x \end{array}\right| \bigg]

=\sf (3a - x) \bigg[2x \left| \begin{array}{c c} 1 & a - x \\ 1 & a + x \end{array} \right| \bigg]

 = \sf (3a - x) \bigg[2x  \times 2x\bigg]

 \implies \: (3a - x) \times  {4x}^{2}  = 0 \\

 \therefore \:  {x}^{2}  = 0  \: \: or \:  3a - x = 0

x = 0, 0 or x = 3a

x=\begin{cases}0 \\ 0 \\ 3a\end{cases}

Hence, proved!


Rythm14: Awesome!
Anonymous: Thank you!
Similar questions