pls answer fast guys.....
35 points
Answers
Answer:
(x₁² - ay₁) x + (y₁² - ax₁) y = ax₁y₁
Step-by-step explanation:
Given--->
----------
Equation of curve
x³ + y³ = 3axy and point on curve is (x₁,y₁)
To prove --->
---------------
Eqyation of tangent at point ( x₁, y₁ ) is
(x₁² - ay₁)x + (y₁² - ax₁)y = ax₁y₁
Proof--->
----------
x³ + y³ = 3a x y -----------------(1)
Point (x₁ , y₁) is on the curve so it satisfy the equation of curve ie equation (1)
x₁³ + y₁³ = 3a x₁ y₁
x₁³ + y₁³ = 2ax₁ y₁ + a x₁ y₁
x₁³ + y₁³ - 2ax₁y₁ = ax₁y₁
Now differentiating equation (1) with respect to x
d / dx ( x³ + y³ ) = 3a d / dx ( x y )
3 x² + 3 y² dy /dx = 3a ( x dy/dx + y × 1)
x² + y² dy/dx = ax dy /dx + ay
( y² - ax ) dy/dx = ( ay - x² )
(ay - x² )
dy / dx = ---------------
( y² - ax )
ay₁ - x₁²
Slope of tangent at (x₁,y₁)=-------------
y₁² - ax₁
Equation of tangent at (x₁,y₁)
(ay₁ - x₁²)
(y- y₁) = ----------------- (x - x₁)
( y₁² - ax₁)
(y-y₁) ( y₁² - ax₁) = (ay₁ - x₁²) ( x - x₁)
(y₁² - ax₁)y - y₁ (y₁² - ax₁) = (ay₁ -x₁² )x -
(ay₁ - x₁²)x₁
-(ay₁ - x₁²)x + (y₁² - ax₁)y =y₁³-ax₁y₁-ax₁y₁ +x₁³
(x₁² -ay₁)x + (y₁² - ax₁)y = (x₁³ -2ax₁y₁ + y₁³)
putting x₁³ -2ax₁y₁ + y₁³ = ax₁y₁
(x₁² - ay₁)x + (y₁² - ax₁) y = ax₁ y₁
Step-by-step explanation:
Hope This Helps Better Or Comment Down,
Please Mark Me As Brainliest