Math, asked by d3evinajonyssomalsa, 1 year ago

Pls answer fast... If cosec theta is equal to 13/12, find 2 sin theta - 3cos theta/4 sin theta - 9 cos theta.

Answers

Answered by mysticd
152
cosec theta = 13/12

sin theta = 12 /13---(1)
cos theta = √1-sin² theta

= √1- (12/13)²
= √1- 144/169
= √(169-144)/169
=√25/169
= 5/13
therefore
sin theta = 12/13, cos theta =5/13
(2sin theta -3 cos theta) /(4sin theta -9 cos theta)

= (2*12/13 - 3*5/13) /(4*12/13 - 9* 5/13)
=( 24/13 - 15/13)/ (48/13 - 45/13)
= [(24-15)/13]/[(48-45)/13]
=9/3
=3

Answered by ravindrakumarmeena13
32

Answer:


Step-by-step explanation:


cosec theta = 13/12


sin theta = 12 /13---(1)

cos theta = √1-sin² theta


= √1- (12/13)²

= √1- 144/169

= √(169-144)/169

=√25/169

= 5/13

therefore

sin theta = 12/13, cos theta =5/13

(2sin theta -3 cos theta) /(4sin theta -9 cos theta)


= (2*12/13 - 3*5/13) /(4*12/13 - 9* 5/13)

=( 24/13 - 15/13)/ (48/13 - 45/13)

= [(24-15)/13]/[(48-45)/13]

Similar questions