pls answer fast ,it's very urgent...
Answers
Step-by-step explanation:
= n
therefore,
n = (Equation 1)
and = m
therefore,
m = (Equation 2)
L.H.S =
Taking R.H.S
\frac{m^{2}-1 }{n^{2}-1}[/tex]
Replace the value of m & n by the Equation 1 & Equation 2 Respectively.
=
=
as we know
therefore,
=
=
=
we know that,
= =
therefore replace =
=
we know that,
=
thus,
=
=
=
= =L.H.S
Answer:
cos^{2} x = \frac{m^{2}-1 }{n^{2}-1}cos
2
x=
n
2
−1
m
2
−1
Step-by-step explanation:
tanxtanx = n tanytany
therefore,
n = \frac{tanx}{tany}
tany
tanx
(Equation 1)
and sinxsinx = m sinysiny
therefore,
m = \frac{sinx}{siny}
siny
sinx
(Equation 2)
L.H.S = cos^{2} x < /p > < p > R.H.S =
Replace the value of m & n by the Equation 1 & Equation 2 Respectively.
= \frac{(\frac{sinx}{siny}) ^{2}- 1}{(\frac{tanx}{tany})^{2}-1 }
(
tany
tanx
)
2
−1
(
siny
sinx
)
2
−1
= \frac{\frac{sin^{2}x-sin^{2}y }{sin^{2}y } }{\frac{tan^{2}x -tan^{2}y }{tan^{2} y} }
tan
2
y
tan
2
x−tan
2
y
sin
2
y
sin
2
x−sin
2
y
as we know tan^{2} y = \frac{sin^{2}y }{cos^{2} y}tan
2
y=
cos
2
y
sin
2
y
therefore,
= \frac{\frac{sin^{2}x-sin^{2}y }{sin^{2}y } }{\frac{tan^{2}x - tan^{2}y }{\frac{sin^{2}y}{cos^{2} y}} }
cos
2
y
sin
2
y
tan
2
x− tan
2
y
sin
2
y
sin
2
x−sin
2
y
=\frac{sin^{2}x-sin^{2}y }{sin^{2}y }
sin
2
y
sin
2
x−sin
2
y
\frac{sin^{2}y }{cos^{2}y(tan^{2}x-tan^{2}y)}
cos
2
y(tan
2
x−tan
2
y)
sin
2
y
=\frac{sin^{2}x-sin^{2}y }{cos^{2}y(tan^{2}x-tan^{2}y)}
cos
2
y(tan
2
x−tan
2
y)
sin
2
x−sin
2
y
we know that,
= sin^{2} xsin
2
x =1-cos^{2} x1−cos
2
x
therefore replace sin^{2} xsin
2
x =1-cos^{2} x1−cos
2
x
=\frac{1-cos^{2}x-1+cos^{2}y }{cos^{2}y(tan^{2}x-tan^{2}y)}
cos
2
y(tan
2
x−tan
2
y)
1−cos
2
x−1+cos
2
y
we know that,
=tan^{2} x=sec^{2} x-1tan
2
x=sec
2
x−1
thus,
=\frac{cos^{2}y-cos^{2}x }{cos^{2}y(sec^{2}x-1-sec^{2}y+1)}
cos
2
y(sec
2
x−1−sec
2
y+1)
cos
2
y−cos
2
x
=\frac{cos^{2}y-cos^{2}x }{cos^{2}y(\frac{1}{cos^{2}x } -\frac{1}{cos^{2}y})}
cos
2
y(
cos
2
x
1
−
cos
2
y
1
)
cos
2
y−cos
2
x
=\frac{cos^{2}y-cos^{2}x }{cos^{2}y(\frac{cos^{2}y -cos^{2}x }{cos^{2}x .cos^{2}y})}
cos
2
y(
cos
2
x.cos
2
y
cos
2
y−cos
2
x
)
cos
2
y−cos
2
x
= cos^{2}xcos
2
x =L.H.S