Math, asked by Kritanu1209, 10 months ago

Pls answer fast.....its urgent​

Attachments:

Answers

Answered by amitkumar44481
7

Correct Question :

 \tt \frac{ { \tan }^{2}  \theta}{ {( \sec \theta - 1) }^{2} } =  \frac{1 +  \cos \theta }{1 +  \cos \theta}

Formula Required :

  • 1+ tan² theta = Sec²theta.
  • (a-b)(a+b) = a²- b².
  • 1/Cos theta = Sec theta.

Solution :

Taking LHS,

\dashrightarrow\tt\frac{ { \tan }^{2}  \theta}{ {( \sec \theta - 1) }^{2} } \\

 \dashrightarrow\tt \frac{ { \sec}^{2}  \theta - 1}{ {( \sec \theta - 1) }^{2} } \\

\dashrightarrow\tt \frac{ (\sec \theta + 1)( \sec \theta - 1) }{( \sec \theta - 1) ( \sec \theta - 1)} \\

 \dashrightarrow\tt \frac{ \sec \theta + 1}{ \sec \theta - 1}  \\

Now, Convert In Cos theta.

 \dashrightarrow\tt \frac{1 +  \cos \theta }{1  -   \cos \theta } \\

# RHS = LHS

Hence Proved.

Answered by anshi60
27

Question :-

To prove :-

 \frac{ {tan}^{2} \theta }{ ({sec \theta - 1)}^{2} }  =  \frac{1 + cos \theta}{1 - cos \theta}

Trigonometry Identities Used :-

 1 +  {tan}^{2}  \theta =  {sec}^{2}  \theta \\    {tan}^{2}  \theta =  {sec}^{2}  \theta - 1 \\(a - b)(a + b) =  {a}^{2}  -  {b}^{2} \\  sec \theta =  \frac{1}{cos \theta}

Proof :-

Taking LHS

 \frac{ {tan}^{2}  \theta}{( {sec \theta - 1)}^{2} }  \\  \\  =  \frac{ {sec}^{2} \theta - 1 }{ ({sec \theta - 1)}^{2} }  \\  \\  =  \frac{ {sec}^{2} \theta -  {1}^{2}  }{( {sec \theta - 1)}^{2} }  \\  \\  =  \frac{(sec \theta + 1)(sec \theta - 1)}{(sec \theta - 1)(sec \theta - 1)}  \\  \\  =  \frac{sec \theta + 1}{sec \theta - 1}  \\  \\  =  \frac{ \frac{1}{cos \theta} + 1 }{ \frac{1}{cos \theta} - 1 }  \\  \\  =  \frac{ \frac{1 + cos \theta}{cos \theta} }{ \frac{1 - cos \theta}{cos \theta} }  \\  \\  =  \frac{1 + cos \theta}{1 - cos \theta}  = RHS \\  \\ {\purple{\boxed{\large{\bold{LHS = RHS}}}}}

Hence proved

Similar questions