Math, asked by chickoo60, 10 months ago

pls answer friends I will follow u for sure​

Attachments:

Answers

Answered by amitkumar44481
16

AnsWer :

- 21√5.

QuestioN :

If  \tt \bullet \:  \:  \:  \:  \:  \boxed{ \tt a =  \dfrac{3 -  \sqrt{5} }{3 +  \sqrt{5} } } \:  \: and \:  \:  \boxed{\tt b =  \dfrac{3 +  \sqrt{5} }{3 -  \sqrt{5} } }

SolutioN :

 \tt \bullet \:  \:  \:  \:  \:  \boxed{ \tt a =  \dfrac{3 -  \sqrt{5} }{3 +  \sqrt{5} } } \:  \: and \:  \:  \boxed{\tt b =  \dfrac{3 +  \sqrt{5} }{3 -  \sqrt{5} } }

Taking a.

 \tt  : \implies a =  \dfrac{3 -  \sqrt{5} }{3 +  \sqrt{5} }

 \tt  : \implies a =  \dfrac{3 -  \sqrt{5} }{3 +  \sqrt{5} }  \times  \dfrac{3 -  \sqrt{5} }{3  -   \sqrt{5} }

Apply Formula :

  • ( a + b )² = a² + b² + 2ab.
  • ( a - b )² = a² + b² - 2ab.
  • ( a + b )( a - b ) = a² - b².

 \tt  : \implies a =  \dfrac{ \bigg(3 -  \sqrt{5}  \bigg)^{2} }{3 ^{2}  -    \big(\sqrt{5}   \big)^{2} }

 \tt  : \implies a =  \dfrac{9 + 5 - 6 \sqrt{5}  }{9  -    5 }

 \tt  : \implies a =  \dfrac{14 - 6 \sqrt{5}  }{4 }

 \tt  : \implies a =  \dfrac{2(7- 3 \sqrt{5} ) }{4 }

 \tt  : \implies a =  \dfrac{7- 3 \sqrt{5}  }{2}

\rule{200}3

Taking b.

 \tt  : \implies b =  \dfrac{3 +  \sqrt{5} }{3 -  \sqrt{5} }

 \tt  : \implies b =  \dfrac{3 +  \sqrt{5} }{3 -  \sqrt{5} } \times \dfrac{3 +  \sqrt{5} }{3  +   \sqrt{5} }

 \tt  : \implies b =  \dfrac{ \bigg(3 +  \sqrt{5}  \bigg)^{2}  }{3^{2}  -  (\sqrt{5})^{2} }

 \tt  : \implies b =  \dfrac{ 9 + 5 + 6 \sqrt{5}  }{9  -  5 }

 \tt  : \implies b =  \dfrac{ 14 + 6 \sqrt{5}  }{9  -  5 }

 \tt  : \implies b =  \dfrac{ 14 + 6 \sqrt{5}  }{4 }

 \tt  : \implies b =  \dfrac{ 2(7+ 3 \sqrt{5} ) }{4 }

 \tt  : \implies b =  \dfrac{ 7+ 3 \sqrt{5}  }{2 }

\rule{200}3

According to Question, Let's Find

  • The value of a² - b².

 \tt \bullet \:  \:  \:  \:  \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

 \tt :  \implies{a}^{2}  -  {b}^{2}  = \bigg(\dfrac{7- 3 \sqrt{5}  }{2} + \dfrac{ 7+ 3 \sqrt{5}  }{2 }  \bigg)\bigg(\dfrac{7- 3 \sqrt{5}  }{2}  -  \dfrac{ 7+ 3 \sqrt{5}  }{2 }  \bigg)

 \tt :  \implies{a}^{2}  -  {b}^{2}  = \bigg(\dfrac{7- 3 \sqrt{5}  + 7 + 3 \sqrt{5}  }{2}\bigg)\bigg(\dfrac{7- 3 \sqrt{5}  - (7 + 3 \sqrt{5} ) }{2}\bigg)

 \tt :  \implies{a}^{2}  -  {b}^{2}  = \bigg(\dfrac{7- 3 \sqrt{5}  + 7 + 3 \sqrt{5}  }{2}\bigg)\bigg(\dfrac{7- 3 \sqrt{5}  - 7  -  3 \sqrt{5} ) }{2}\bigg)

 \tt :  \implies{a}^{2}  -  {b}^{2}  = \bigg(\dfrac{14}{2}\bigg)\bigg(\dfrac{- 3 \sqrt{5}  -  3 \sqrt{5} }{2}\bigg)

 \tt :  \implies{a}^{2}  -  {b}^{2}  = \bigg(\dfrac{14}{2}\bigg)\bigg(\dfrac{  -  6 \sqrt{5}  }{2}\bigg)

 \tt :  \implies{a}^{2}  -  {b}^{2}  = (7)( - 3 \sqrt{5} )

 \tt :  \implies{a}^{2}  -  {b}^{2}  =  - 21 \sqrt{5}

Therefore, the value of a² - b² is - 21√5.


Anonymous: :fb_wow: Awesome ^^"
Tomboyish44: Incredible answer!
amitkumar44481: Thanks all :-)
Similar questions