Math, asked by barejaharshit13, 4 months ago

Pls answer, god will bless you with ₹999999999

Attachments:

Answers

Answered by AlluringNightingale
3

Given :

secA + tanA = p

To prove :

sinA = (p² - 1)/(p² + 1)

Proof :

We have ;

secA + tanA = p

Now ,

Squaring both the sides , we get ;

=> (secA + tanA)² = p²

=> sec²A + tan²A + 2secA.tanA = p²

Now ,

Applying componendo and dividendo rule , we get ;

 =  >  \frac{ {sec}^{2}A +  {tan}^{2}A + 2secA.tanA  - 1}{{sec}^{2}A +  {tan}^{2}A + 2secA.tanA   +  1}  =  \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

 =  >  \frac{ ({sec}^{2}A  - 1)+  {tan}^{2}A + 2secA.tanA  }{{sec}^{2}A +  ({tan}^{2}A  + 1)+ 2secA.tanA   }  =  \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

 =  >  \frac{ {tan}^{2}A+  {tan}^{2}A+ 2secA.tanA  }{{sec}^{2}A +  {sec}^{2} A + 2secA.tanA   }  =  \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

 =  >  \frac{ 2{tan}^{2} A + 2secA.tanA  }{2{sec}^{2}A  + 2secA.tanA   }  =  \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

 =  >  \frac{ 2tanA(tanA+ secA)  }{2secA(secA + tanA)  }  =  \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

 =  >  \frac{ tanA  }{secA  }  =  \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

 =  > tanA \times  \frac{1}{secA} =  \frac{ {p}^{2} - 1 }{ {p}^{2} + 1 }

 =  >  \frac{sinA}{cosA} \times cosA  =  \frac{ {p}^{2} - 1 }{ {p}^{2} + 1 }

 =  >  sinA=  \frac{ {p}^{2} - 1 }{ {p}^{2} + 1 }

Hence proved .

Similar questions