Math, asked by vaibhavikhalkar59, 11 months ago

pls answer guys I will follow the one answering properly !!!​

Attachments:

Answers

Answered by rishabh2328
2

Consider, Area (ΔPBC) = \frac{1}{2}BC×PQ

Area (ΔABC) =\frac{1}{2}(AB+BC+CA)×PQ

\frac{Area(ABC)}{Area(PBC)}=\frac{PQ(AB+ BC+CA)}{BC(PQ)}[\tex]</p><p></p><p><strong>Since, area of triangles with same base is equal to the proportion of their heights.</strong></p><p></p><p>[tex]\frac{Area(ABC)}{Area(PBC)}=\frac{AQ}{PQ}

\frac{AQ}{PQ}=\frac{(AB+ BC+CA)}{BC}[\tex]</p><p></p><p>[tex]\frac{AQ+PQ}{PQ}=\frac{(AB+ BC+CA)}{BC}[\tex]</p><p></p><p></p><p><strong><u>Dividing the denominator to each numerator, we get</u></strong></p><p></p><p></p><p>[tex]\frac{AQ}{PQ}+1 = \frac{AB+CA}{BC}[\tex] +1</p><p></p><h3><strong><u>Hence , we get the required result,</u></strong></h3><p></p><p>[tex]\frac{AQ}{PQ}=[tex]\frac{AB+CA}{BC}[\tex]

_______________________________________

Answered by Anonymous
9

Answer:

Consider, Area (ΔPBC) = \frac{1}{2}

2

1

BC×PQ

Area (ΔABC) =\frac{1}{2}

2

1

(AB+BC+CA)×PQ

\frac{Area(ABC)}{Area(PBC)}

Area(PBC)

Area(ABC)

= =\frac{AQ}{PQ}

PQ

AQ

\frac{AQ}{PQ}

PQ

AQ

= =+1 = =[tex]\frac{AB+CA}{BC}[\tex]

_______________________________________

Step-by-step explanation:

hope its help you

=====ayan=====

Similar questions