Math, asked by sahaana10, 9 months ago

pls answer i will for sure follow who answers​

Attachments:

Answers

Answered by amitkumar44481
40

To ProvE :

 \tt \dagger \:  \:  \:  \:  \:\dfrac {Sin \, x - tan \, x }{tan \, x .Sin \, x}= \dfrac{Cos\,x - 1 }{Sin\, x}

QuestioN :

\tt \dagger \:  \:  \:  \:  \: Prove \: the \: Identity :

 \tt \dagger \:  \:  \:  \:  \:\dfrac {Sin \, x - tan \, x }{tan \, x .Sin \, x}= \dfrac{Cos\,x - 1 }{Sin\, x}

SolutioN :

 \tt \dagger \:  \:  \:  \:  \:\dfrac {Sin \, x - tan \, x }{tan \, x .Sin \, x}= \dfrac{Cos\,x - 1 }{Sin\, x}

☛ Taking LHS.

 \tt :  \implies\dfrac {Sin \, x - tan \, x }{tan \, x .Sin \, x}

✎ We can also write as,

 \tt :  \implies\dfrac {Sin \, x }{tan \, x .Sin \, x} -  \dfrac{tan \, x }{tan \, x .Sin \, x}

 \tt :  \implies\dfrac { \cancel{Sin \, x }}{tan \, x . \cancel{Sin \, x}} -  \dfrac{ \cancel{tan \, x} }{ \cancel{tan \, x} .Sin \, x}

 \tt :  \implies\dfrac {1}{tan \, x} -  \dfrac{1 }{Sin \, x}

 \tt :  \implies\dfrac {1}{tan \, x} -  \dfrac{1 }{Sin \, x}

  • › Note : 1 / tan x = cot x.

 \tt :  \implies Cot\, x -  \dfrac{1 }{Sin \, x}

  • › Cot x → Cos x / Sin x.

 \tt :  \implies\dfrac {Cos \, x }{Sin \, x} -  \dfrac{1 }{Sin \, x}

 \tt :  \implies  \dfrac{Cos \, x - 1}{Sin \, x}

Hence Proved.

Similar questions