Math, asked by praneetharaju2006, 11 months ago

pls answer it .... ​

Attachments:

Answers

Answered by ITzBrainlyGuy
2

Answer:

Given that

x =  {(2  +  \sqrt{5}) }^{ \frac{1}{2} }  +  {(2 -  \sqrt{5}) }^{ \frac{1}{2} }

y =  {(2 +  \sqrt{5}) }^{ \frac{1}{2} }  -  {(2 -  \sqrt{5}) }^{ \frac{1}{2} }

We know that power 1/2 = square root

Now,

x =  \sqrt{2 +  \sqrt{5} }  +  \sqrt{2 -  \sqrt{5} }

assuming as equation ( 1 )

y =  \sqrt{2 +  \sqrt{5} }  -  \sqrt{2 -  \sqrt{5} }

assuming as equation ( 2 )

equation (1) squaring on both sides (S.O.B.S)

 {x}^{2} =   {( \sqrt{2 +  \sqrt{5} }  +  \sqrt{2 -  \sqrt{5} } )}^{2}

Using

(a + b)² = a² + b² + 2ab

 {x}^{2}  =  {( \sqrt{2 +  \sqrt{5} } )}^{2}  +  {( \sqrt{2 -  \sqrt{5} } )}^{2}  + 2 \sqrt{(2 +  \sqrt{5} )(2 -  \sqrt{5}) }

Using

(a + b)(a - b) = a² - b²

 {x}^{2}  = 2  +  \sqrt{5}  + 2 -  \sqrt{5} +  2 \sqrt{4 - 5}

We know that

√-1 = i

Because it is a complex number

Complex number : it is a negative number present under root

 {x}^{2}  = 4 + 2i

Assuming as equation (3)

Now ,

Equation ( 2 ) squaring on both sides (S.O.B.S)

 {y}^{2}  = {( \sqrt{2 +  \sqrt{5} }  -  \sqrt{2 -  \sqrt{5} })}^{2}

Using (a - b)² = a² + b² - 2ab

 {y}^{2}  =  {( \sqrt{2 +  \sqrt{5} }) }^{2}  +  {( \sqrt{2 -  \sqrt{5} } )}^{2}  - 2 \sqrt{(2 +  \sqrt{5} )(2 -  \sqrt{5}) }

 {y}^{2}  = 2 +  \sqrt{5}  + 2 -  \sqrt{5}    - 2i

 {y}^{2}  = 4 - 2i

Assuming as equation (4)

Equation (3) + Equation (4)

 {x}^{2}  +  {y}^{2}  = 4 + 2i  +  4  - 2i

 {x}^{2}  +  {y}^{2}  = 8

Similar questions