Math, asked by poojahans, 11 months ago

pls answer it fast....✌️❤️❤️❤️❤️❤️❤️❤️

Attachments:

Anonymous: Mark my Ans as brainlist if it helps you.

Answers

Answered by Shadow1789
3

Step-by-step explanation:

Hope the answer helps .

Ignore the mistakes.

Attachments:
Answered by Anonymous
2

Given \:  \: Question \:  \: Is \:  \\  \\ a {}^{x}  = b {}^{y}  = c {}^{z}  \:  \:  \:  \:  \:  \:  \:  \:  \: b {}^{2}  = ac \\  \\ Answer \:  \\  \\ a {}^{x}  = b {}^{y}  = c {}^{z}  = k \:  \:  \:  \: let \\  \\  \\ a {}^{x}  = k \:  \:  \:  \:  \:  \: b {}^{y}  = k \:  \:  \:  \:  \: and \:  \:  \:  \: c {}^{z}  = k \\  \\ a = k {}^{ \frac{1}{x} }  \:  \: ...Equation \:  \:  \: i \\  \\ b = k {}^{ \frac{1}{y} }  \:  \: ...Equation \:  \:  \:  \: ii \\  \\ c = k {}^{ \frac{1}{z} }  \:  \: ... \:  \: Equation \:  \:  \: iii \\  \\ b {}^{2}  = ac \:  \:  \:  \:  \: (Given) \\  \\ k {}^{ \frac{2}{y} }  = k {}^{ \frac{1}{x} }  \:  \: . \:  \:  \: k {}^{ \frac{1}{z} }  \\  \\ k {}^{ \frac{2}{y} }  = k {}^{( \frac{1}{x}  +  \frac{1}{z} )}  \\  \\ now \: compare \: powers \: of \: k \:  \: we \: have \\  \\  \\  \frac{2}{y}  =   \frac{1}{x}  +  \frac{1}{z}  \\  \\   \frac{2}{y}  =  \frac{(z + x)}{xz}  \\  \\  \frac{y}{2}  =  \frac{xz}{(x + z)}  \\  \\ y =  \frac{2zx}{(x + z)}   \:  \:  \:  \: hence \:  \:  \:proved \\  \\  \\ Note \:  \\  \\ if \:  \: t {}^{n}  = v \:  \\ then \:  \:  \:  \:  \:  \:  \: t = v {}^{ \frac{1}{n} }

Similar questions