Math, asked by dhanya899, 6 hours ago

pls answer it quickly and no spam answer ​

Attachments:

Answers

Answered by poojamehta7684
0

Answer:

1/11

Step-by-step explanation:

2square =4

3square =6

1/1+4+6

1/11

I AM NOT SURE ABOUT THE ANSWER

SORRY

Answered by SugarCrash
7

Question:

  • Rationalise the denominator of \dfrac{1}{1+\sqrt2 + \sqrt3 }

Solution:

\blue\underbrace{\red{\textbf{Points to know }}}:

  • Rationalising is method of removing irrational number or radial from the denominator.
  • To Rationalise a fraction we have to multiply and divide the given fraction by the conjugate of the denominator.

\longmapsto\dfrac{1}{(1+\sqrt2) + \sqrt3 }

Here we have denominator ( 1 +√2 )+√3 . So, Its Conjugate will be  ( 1 +√2 ) -√3. So, We will multiply and divide the fraction by ( 1 +√2 ) -√3 .

\longmapsto\dfrac{1}{(1+\sqrt2 )+ \sqrt3 } \\\\\\\dashrightarrow \dfrac{1}{(1+\sqrt2 )+ \sqrt3 } \times \dfrac{(1+\sqrt2 )- \sqrt3}{(1+\sqrt2 )- \sqrt3} \\\\\\\dashrightarrow \dfrac{(1+\sqrt2 )- \sqrt3}{\{(1+\sqrt2 )+\sqrt3\}\{(1+\sqrt2 )- \sqrt3\}}\\\\\\\dashrightarrow \dfrac{1+\sqrt2 - \sqrt3}{(1+\sqrt2 )^2- (\sqrt3)^2}\\\\\\\dashrightarrow \dfrac{1+\sqrt2 - \sqrt3}{(1^2+\sqrt2^2+\sqrt2\times 1\times2) - (3)}\\\\\\\dashrightarrow \dfrac{1+\sqrt2 - \sqrt3}{(1+2+2\sqrt2)-(3)}

\\\dashrightarrow \dfrac{1+\sqrt2-\sqrt3}{3+2\sqrt2-3}\\\\\\\dashrightarrow  \dfrac{1+\sqrt2-\sqrt3}{2\sqrt2}

  • Here we have to again rationalise the fraction because there is still a irrational number in denominator.

\dashrightarrow \dfrac{1+\sqrt2-\sqrt3}{2\sqrt2}\\\\\\\dashrightarrow \dfrac{1+\sqrt2-\sqrt3}{2\sqrt2}\times \dfrac{2\sqrt2}{2\sqrt2}\\\\\\\dashrightarrow \dfrac{2\sqrt2(1+\sqrt2-\sqrt3)}{8}\\\\\\\dashrightarrow \dfrac{\sqrt2(1+\sqrt2-\sqrt3)}{4}

Hence,

  • \dfrac{1}{1+\sqrt2 + \sqrt3 }=\dfrac{\sqrt2(1+\sqrt2-\sqrt3)}{4}
Similar questions