Math, asked by tishahalder63, 2 months ago


Pls answer it's urgent !!
••••••••••••••••••••••••••••••••••••••••••••••••
Don't spam
❌❌❌❌❌❌❌❌❌❌❌❌❌

Attachments:

Answers

Answered by BrainlyGayathri
2

Question:-

Prove :

 \frac{ \sin8x  \cos \: x -  \cos3x \sin6x  }{ \cos2x  \cos \: x -  \sin3x \sin4x   }  =  \tan2x

Solution:-

To Prove:-

 \frac{ \sin8x  \cos \: x -  \ \sin6x  }{ \cos2x  \cos \: x -  \sin3x \sin4x   }  =  \tan2x

Procedure:-

Take LHS

Multiply numerator and denominator with 2

 \frac{(2 \sin8x \cos \: x - 2 \sin6x \cos3x)}{(2 \cos2x \cos \: x - 2 \sin3x \sin4x)}

Apply product to sum formula

 \frac{ (\sin9x +  \sin7x) - ( \sin9x +  \sin3x)}{( \cos3x +  \cos \: x) - ( -  \cos \: x -  \cos7x)}

 \frac{ \sin7x -  \sin3x}{ \cos3x +  \cos7x}

Apply sum to product formulae

 \frac{(2 \ \sin2x)}{(2 \cos5x \cos2x)}

 \tan2x =RHS

Hence, proved

Similar questions