Math, asked by Anonymous, 6 months ago

pls answer it's urgent
pls​

Attachments:

Answers

Answered by aathreyee23
2

Answer:

1) 25 units

2) 84 units sqaure

Step-by-step explanation:

Since Δ ABC is a right angle triangle. Using pythogoras theorem,

AC² = AB² + BC²

AC² = (24)² + (7)²

AC² = 576 + 49

AC² = 625

AC = √625

∴ AC = 25

2) Area of a triangle = \frac{1}{2} × base × height

(# taking base as 24 and height as 7)

⇒ Area = \frac{1}{2} × 24 × 7

Area = 12 × 7

∴ Area = 84 units square

Hope it helps!

Answered by sethrollins13
28

Given :

  • A right angles traingle in which AB = 24 units and BC = 7 units .

To Find :

  • Length of AC .
  • Area of Δ ABC .

Solution :

Firstly we will find the length of AC :

Using Pythagorus Theorem :

\longmapsto\tt\bf{{(AC)}^{2}={(AB)}^{2}+{(BC)}^{2}}

\longmapsto\tt{{(AC)}^{2}={(24)}^{2}+{(7)}^{2}}

\longmapsto\tt{{(AC)}^{2}=576+49}

\longmapsto\tt{{(AC)}^{2}=625}

\longmapsto\tt\bf{AC=25\:units}

So , The Length of AC is 25 units ....

Now ,

\longmapsto\tt{Base=7\:units}

\longmapsto\tt{Height=24\:units}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:\triangle=\dfrac{1}{2}\times{b}\times{h}}

Putting Values :

\longmapsto\tt{\dfrac{1}{{\cancel{2}}}\times{7}\times{{\cancel{24}}}}

\longmapsto\tt{7\times{12}}

\longmapsto\tt\bf{84\:units}

So , Area of Triangle is 84 sq. units ...

Attachments:
Similar questions