Math, asked by mdhaja2007, 9 months ago

pls answer iwant the ANSWER

Attachments:

Answers

Answered by paulerdo
1

Answer:

few identities which can be used is :

a to the power -1 = 1/a

  \frac{{x}^{a}}{ {x}^{b} }   =  {x}^{a - b}

Attachments:
Answered by VishnuPriya2801
7

Answer:-

 \sf \large{ 1. \: [({4)}^{ - 1}  -  {(5)}^{ - 1}]  ^{ - 1}  \div  {[( {5}^{2}) }^{3}  \times  {5}^{ - 5} ]}

Using a^(- n) = 1/a^n and (a^m)^n = a^(mn) we get,

 \sf \implies \:  \frac{1}{ {4}^{ - 1}  -  {5}^{ - 1}  }   \div  {5}^{6}  \times  {5}^{ - 5}

 \sf \implies \:  \frac{1}{ \frac{1}{4} -  \frac{1}{5}  }  \div  {5}^{6 - 5}

[Since, a^m × a^n = a^(m + n)]

 \sf \implies \:  \frac{1}{ \frac{5 - 4}{20} }    \div  {5}^{1}

 \sf \implies \:  \frac{20}{1}  \div 5

  \implies \sf \large\red{{4}}

 \sf \large{2.  \: [{( \frac{1}{4} )}^{ - 1} +  {  (\frac{1}{3} )}^{ - 2}   - ( { \frac{1}{2} )}^{ - 3} ] \div  {5}^{2} }

 \sf \implies \:  {( {4}^{ - 1} )}^{ - 1} +  { ({3}^{ - 1} )}^{ - 2}   -  {( {2}^{ - 1} )}^{ - 3}  \div  {5}^{2}

 \sf \implies \: (4 +  {3}^{2}   -  {2}^{3} ) \div  {5}^{2}

 \sf \implies \: (4 + 9 - 8) \div  {5}^{2}

 \sf \implies \:  \frac{5}{25}

 \implies \sf \large{ \red{\frac{1}{5} }}

Similar questions